Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import logging | |
from enum import Enum, auto | |
from typing import Protocol, List, Dict, Any | |
from dataclasses import dataclass, field | |
from datetime import datetime | |
import difflib | |
import pytest | |
from concurrent.futures import ThreadPoolExecutor | |
import asyncio | |
# Initialize logger | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class Config: | |
"""Configuration class for the agent system""" | |
rag_system_path: str | |
max_workers: int = 10 | |
log_level: str = "INFO" | |
model_settings: Dict[str, Any] = field(default_factory=dict) | |
api_keys: Dict[str, str] = field(default_factory=dict) | |
def __post_init__(self): | |
"""Validate configuration after initialization""" | |
if not hasattr(self, 'rag_system_path'): | |
raise ValueError("RAG system path must be specified in config") | |
class RAGSystem: | |
"""Retrieval Augmented Generation System""" | |
def __init__(self, config: Config): | |
self.config = config | |
self.model_settings = config.model_settings | |
async def generate_reasoning(self, prompt: str) -> str: | |
"""Generate reasoning based on the provided prompt""" | |
try: | |
# Placeholder for actual RAG implementation | |
return f"Generated reasoning for: {prompt}" | |
except Exception as e: | |
logger.error(f"Error in RAG system: {e}") | |
raise | |
class AgentRole(Enum): | |
ARCHITECT = auto() | |
FRONTEND = auto() | |
BACKEND = auto() | |
DATABASE = auto() | |
TESTER = auto() | |
REVIEWER = auto() | |
DEPLOYER = auto() | |
class AgentDecision: | |
agent: 'Agent' | |
decision: str | |
confidence: float | |
reasoning: str | |
timestamp: datetime = field(default_factory=datetime.now) | |
dependencies: List['AgentDecision'] = field(default_factory=list) | |
class AgentProtocol(Protocol): | |
async def decide(self, context: Dict[str, Any]) -> AgentDecision: ... | |
async def validate(self, decision: AgentDecision) -> bool: ... | |
async def implement(self, decision: AgentDecision) -> Any: ... | |
async def test(self, implementation: Any) -> bool: ... | |
class Agent: | |
role: AgentRole | |
name: str | |
autonomy_level: float # 0-10 | |
expertise: List[str] | |
confidence_threshold: float = 0.7 | |
rag_system: RAGSystem = None | |
async def reason(self, context: Dict[str, Any]) -> str: | |
"""Generate reasoning based on context and expertise""" | |
if not self.rag_system: | |
raise ValueError("RAG system not initialized") | |
prompt = f""" | |
As {self.name}, a {self.role.name} expert with expertise in {', '.join(self.expertise)}, | |
analyze the following context and provide reasoning: | |
Context: | |
{json.dumps(context, indent=2)} | |
Consider: | |
1. Required components and their interactions | |
2. Potential challenges and solutions | |
3. Best practices and patterns | |
4. Security and performance implications | |
Reasoning: | |
""" | |
return await self.rag_system.generate_reasoning(prompt) | |
async def decide(self, context: Dict[str, Any]) -> AgentDecision: | |
"""Make a decision based on context and expertise""" | |
reasoning = await self.reason(context) | |
confidence = 0.8 # Placeholder for actual confidence calculation | |
return AgentDecision( | |
agent=self, | |
decision=f"Decision based on {reasoning}", | |
confidence=confidence, | |
reasoning=reasoning | |
) | |
class AgentSystem: | |
def __init__(self, config: Config): | |
self.config = config | |
self.autonomy_level = 0.0 # 0-10 | |
self.rag_system = RAGSystem(config) | |
self.agents: Dict[AgentRole, Agent] = self._initialize_agents() | |
self.decision_history: List[AgentDecision] = [] | |
self.executor = ThreadPoolExecutor(max_workers=config.max_workers) | |
self.validator = AgentValidator() | |
self.tester = AgentTester() | |
def _initialize_agents(self) -> Dict[AgentRole, Agent]: | |
agents = { | |
AgentRole.ARCHITECT: Agent( | |
role=AgentRole.ARCHITECT, | |
name="System Architect", | |
autonomy_level=self.autonomy_level, | |
expertise=["system design", "architecture patterns", "integration"] | |
), | |
AgentRole.FRONTEND: Agent( | |
role=AgentRole.FRONTEND, | |
name="Frontend Developer", | |
autonomy_level=self.autonomy_level, | |
expertise=["UI/UX", "React", "Vue", "Angular"] | |
), | |
AgentRole.BACKEND: Agent( | |
role=AgentRole.BACKEND, | |
name="Backend Developer", | |
autonomy_level=self.autonomy_level, | |
expertise=["API design", "database", "security"] | |
), | |
AgentRole.TESTER: Agent( | |
role=AgentRole.TESTER, | |
name="Quality Assurance", | |
autonomy_level=self.autonomy_level, | |
expertise=["testing", "automation", "quality assurance"] | |
), | |
AgentRole.REVIEWER: Agent( | |
role=AgentRole.REVIEWER, | |
name="Code Reviewer", | |
autonomy_level=self.autonomy_level, | |
expertise=["code quality", "best practices", "security"] | |
), | |
} | |
# Initialize RAG system for each agent | |
for agent in agents.values(): | |
agent.rag_system = self.rag_system | |
return agents | |
async def set_autonomy_level(self, level: float) -> None: | |
"""Update autonomy level for all agents""" | |
self.autonomy_level = max(0.0, min(10.0, level)) | |
for agent in self.agents.values(): | |
agent.autonomy_level = self.autonomy_level | |
async def process_request(self, description: str, context: Dict[str, Any] = None) -> Dict[str, Any]: | |
"""Process a user request with current autonomy level""" | |
try: | |
context = context or {} | |
context['description'] = description | |
context['autonomy_level'] = self.autonomy_level | |
# Start with architect's decision | |
arch_decision = await self.agents[AgentRole.ARCHITECT].decide(context) | |
self.decision_history.append(arch_decision) | |
if self.autonomy_level < 3: | |
# Low autonomy: Wait for user confirmation | |
return { | |
'status': 'pending_confirmation', | |
'decision': arch_decision, | |
'next_steps': self._get_next_steps(arch_decision) | |
} | |
# Medium to high autonomy: Proceed with implementation | |
implementation_plan = await self._create_implementation_plan(arch_decision) | |
if self.autonomy_level >= 7: | |
# High autonomy: Automatic implementation and testing | |
return await self._automated_implementation(implementation_plan) | |
# Medium autonomy: Return plan for user review | |
return { | |
'status': 'pending_review', | |
'plan': implementation_plan, | |
'decisions': self.decision_history | |
} | |
except Exception as e: | |
logger.error(f"Error in request processing: {e}") | |
return {'status': 'error', 'message': str(e)} | |
async def _create_implementation_plan(self, arch_decision: AgentDecision) -> Dict[str, Any]: | |
"""Create detailed implementation plan based on architect's decision""" | |
tasks = [] | |
# Frontend tasks | |
if 'frontend' in arch_decision.decision.lower(): | |
tasks.append(self._create_frontend_tasks(arch_decision)) | |
# Backend tasks | |
if 'backend' in arch_decision.decision.lower(): | |
tasks.append(self._create_backend_tasks(arch_decision)) | |
# Testing tasks | |
tasks.append(self._create_testing_tasks(arch_decision)) | |
return { | |
'tasks': await asyncio.gather(*tasks), | |
'dependencies': arch_decision.dependencies, | |
'estimated_time': self._estimate_implementation_time(tasks) | |
} | |
async def _create_frontend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]: | |
"""Create frontend implementation tasks""" | |
return { | |
'type': 'frontend', | |
'components': [], # Add component definitions | |
'dependencies': arch_decision.dependencies | |
} | |
async def _create_backend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]: | |
"""Create backend implementation tasks""" | |
return { | |
'type': 'backend', | |
'endpoints': [], # Add endpoint definitions | |
'dependencies': arch_decision.dependencies | |
} | |
async def _create_testing_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]: | |
"""Create testing tasks""" | |
return { | |
'type': 'testing', | |
'test_cases': [], # Add test case definitions | |
'dependencies': arch_decision.dependencies | |
} | |
def _estimate_implementation_time(self, tasks: List[Dict[str, Any]]) -> float: | |
"""Estimate implementation time based on tasks""" | |
return sum(len(task.get('components', [])) + len(task.get('endpoints', [])) | |
for task in tasks) * 2.0 # hours per task | |
async def _automated_implementation(self, plan: Dict[str, Any]) -> Dict[str, Any]: | |
"""Execute implementation plan automatically""" | |
results = { | |
'frontend': None, | |
'backend': None, | |
'tests': None, | |
'review': None | |
} | |
try: | |
# Parallel implementation of frontend and backend | |
impl_tasks = [] | |
if 'frontend' in plan['tasks']: | |
impl_tasks.append(self._implement_frontend(plan['tasks']['frontend'])) | |
if 'backend' in plan['tasks']: | |
impl_tasks.append(self._implement_backend(plan['tasks']['backend'])) | |
implementations = await asyncio.gather(*impl_tasks) | |
# Testing | |
test_results = await self.agents[AgentRole.TESTER].test(implementations) | |
# Code review | |
review_results = await self.agents[AgentRole.REVIEWER].validate({ | |
'implementations': implementations, | |
'test_results': test_results | |
}) | |
return { | |
'status': 'completed', | |
'implementations': implementations, | |
'test_results': test_results, | |
'review': review_results, | |
'decisions': self.decision_history | |
} | |
except Exception as e: | |
return { | |
'status': 'error', | |
'message': str(e), | |
'partial_results': results | |
} | |
async def _implement_frontend(self, tasks: Dict[str, Any]) -> Dict[str, Any]: | |
"""Implement frontend components""" | |
return {'components': [], 'status': 'implemented'} | |
async def _implement_backend(self, tasks: Dict[str, Any]) -> Dict[str, Any]: | |
"""Implement backend components""" | |
return {'endpoints': [], 'status': 'implemented'} | |
def _get_next_steps(self, decision: AgentDecision) -> List[str]: | |
"""Get next steps based on decision""" | |
return [ | |
f"Review {decision.decision}", | |
"Provide feedback on the proposed approach", | |
"Approve or request changes" | |
] | |
async def _handle_implementation_failure(self, error: Exception, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Handle implementation failures with adaptive response""" | |
try: | |
# Analyze error | |
error_analysis = await self.agents[AgentRole.REVIEWER].reason({ | |
'error': str(error), | |
'context': context | |
}) | |
# Determine correction strategy | |
if self.autonomy_level >= 8: | |
# High autonomy: Attempt automatic correction | |
correction = await self._attempt_automatic_correction(error_analysis) | |
if correction['success']: | |
return await self.process_request(context['description'], correction['context']) | |
return { | |
'status': 'failure', | |
'error': str(error), | |
'analysis': error_analysis, | |
'suggested_corrections': self._suggest_corrections(error_analysis) | |
} | |
except Exception as e: | |
logger.error(f"Error handling implementation failure: {e}") | |
return {'status': 'critical_error', 'message': str(e)} | |
async def _attempt_automatic_correction(self, error_analysis: Dict[str, Any]) -> Dict[str, Any]: | |
"""Attempt to automatically correct implementation issues""" | |
return { | |
'success': False, | |
'context': {}, | |
'message': 'Automatic correction not implemented' | |
} | |
def _suggest_corrections(self, error_analysis: Dict[str, Any]) -> List[str]: | |
"""Generate suggested corrections based on error analysis""" | |
return [ | |
"Review error details", | |
"Check implementation requirements", | |
"Verify dependencies" | |
] | |
class AgentTester: | |
def __init__(self): | |
self.test_suites = { | |
'frontend': self._test_frontend, | |
'backend': self._test_backend, | |
'integration': self._test_integration | |
} | |
async def _test_frontend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run frontend tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Component rendering tests | |
for component in implementation.get('components', []): | |
try: | |
# Test component rendering | |
result = await self._test_component_render(component) | |
if result['success']: | |
results['passed'].append(f"Component {component['name']} renders correctly") | |
else: | |
results['failed'].append(f"Component {component['name']}: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Error testing {component['name']}: {str(e)}") | |
return results | |
async def _test_backend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run backend tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# API endpoint tests | |
for endpoint in implementation.get('endpoints', []): | |
try: | |
# Test endpoint functionality | |
result = await self._test_endpoint(endpoint) | |
if result['success']: | |
results['passed'].append(f"Endpoint {endpoint['path']} works correctly") | |
else: | |
results['failed'].append(f"Endpoint {endpoint['path']}: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Error testing {endpoint['path']}: {str(e)}") | |
return results | |
async def _test_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run integration tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Test frontend-backend integration | |
try: | |
result = await self._test_frontend_backend_integration(implementation) | |
if result['success']: | |
results['passed'].append("Frontend-Backend integration successful") | |
else: | |
results['failed'].append(f"Integration error: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Integration test error: {str(e)}") | |
return results | |
async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test component rendering""" | |
# Placeholder for actual component rendering test | |
return {'success': True, 'error': None} | |
async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test endpoint functionality""" | |
# Placeholder for actual endpoint test | |
return {'success': True, 'error': None} | |
async def _test_frontend_backend_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test frontend-backend integration""" | |
# Placeholder for actual integration test implementation | |
try: | |
# Add your integration test logic here | |
# For example: | |
# 1. Test API endpoints with frontend components | |
# 2. Verify data flow between frontend and backend | |
# 3. Check authentication and authorization | |
return { | |
'success': True, | |
'error': None, | |
'details': { | |
'api_connectivity': 'OK', | |
'data_flow': 'OK', | |
'auth_flow': 'OK' | |
} | |
} | |
except Exception as e: | |
return { | |
'success': False, | |
'error': str(e), | |
'details': None | |
} | |
async def _test_backend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run backend tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# API endpoint tests | |
for endpoint in implementation.get('endpoints', []): | |
try: | |
# Test endpoint functionality | |
result = await self._test_endpoint(endpoint) | |
if result['success']: | |
results['passed'].append(f"Endpoint {endpoint['path']} works correctly") | |
else: | |
results['failed'].append(f"Endpoint {endpoint['path']}: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Error testing {endpoint['path']}: {str(e)}") | |
return results | |
async def _test_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run integration tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Test frontend-backend integration | |
try: | |
result = await self._test_frontend_backend_integration(implementation) | |
if result['success']: | |
results['passed'].append("Frontend-Backend integration successful") | |
else: | |
results['failed'].append(f"Integration error: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Integration test error: {str(e)}") | |
return results | |
async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test component rendering""" | |
# Placeholder for actual component rendering test | |
return {'success': True, 'error': None} | |
async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test endpoint functionality""" | |
# Placeholder for actual endpoint test | |
return {'success': True, 'error': None} | |
async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test component rendering""" | |
# Placeholder for actual component rendering test | |
return {'success': True, 'error': None} | |
async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test endpoint functionality""" | |
# Placeholder for actual endpoint test | |
return {'success': True, 'error': None} | |
async def _test_frontend_backend_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Test frontend-backend integration""" | |
# Placeholder for actual integration test | |
return {'success': True, 'error': None} | |
class AgentValidator: | |
def __init__(self): | |
self.validators = { | |
'code_quality': self._validate_code_quality, | |
'security': self._validate_security, | |
'performance': self._validate_performance | |
} | |
async def _validate_code_quality(self, code: str) -> Dict[str, Any]: | |
"""Validate code quality metrics""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Add code quality validation logic here | |
return results | |
async def _validate_security(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Validate security best practices""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Add security validation logic here | |
return results | |
async def _validate_performance(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Validate performance metrics""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Add performance validation logic here | |
return results | |
async def validate(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run all validators on the implementation""" | |
results = { | |
'code_quality': await self._validate_code_quality(implementation.get('code', '')), | |
'security': await self._validate_security(implementation), | |
'performance': await self._validate_performance(implementation) | |
} | |
return results | |
# Example usage | |
if __name__ == "__main__": | |
async def main(): | |
config = Config( | |
rag_system_path="/path/to/rag", | |
max_workers=10, | |
log_level="INFO", | |
model_settings={}, | |
api_keys={} | |
) | |
agent_system = AgentSystem(config) | |
await agent_system.set_autonomy_level(5.0) | |
result = await agent_system.process_request( | |
description="Create a new web application", | |
context={"requirements": ["user authentication", "dashboard", "API"]} | |
) | |
print(json.dumps(result, indent=2)) | |
# Run the async main function | |
asyncio.run(main()) |