Spaces:
Runtime error
Runtime error
File size: 6,079 Bytes
20a3a1b b421a4d 20a3a1b 0e7bf2c 20a3a1b 0e7bf2c 20a3a1b 0e7bf2c 20a3a1b bf830aa 20a3a1b 3e11b40 20a3a1b bf830aa 20a3a1b ab5b1b6 335a719 ab5b1b6 335a719 ab5b1b6 20a3a1b 335a719 20a3a1b 335a719 20a3a1b 335a719 20a3a1b 3e11b40 20a3a1b 335a719 20a3a1b 335a719 20a3a1b 3e11b40 20a3a1b 3e11b40 335a719 55fe735 20a3a1b ab5b1b6 20a3a1b 3e11b40 20a3a1b ab5b1b6 87a6fba 20a3a1b 3e11b40 20a3a1b 3e11b40 20a3a1b 3e11b40 20a3a1b 3e11b40 20a3a1b 335a719 20a3a1b 3e11b40 20a3a1b 8ef4046 3e11b40 8ef4046 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# -*- coding: utf-8 -*-
"""DocAI_DeploymentGradio.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1USSEj7nHh2n2hUhTJTC0Iwhj6mSR7-mD
"""
import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
os.system('pip install pyyaml==5.1')
os.system('pip install -q git+https://github.com/huggingface/transformers.git')
os.system('pip install -q datasets seqeval')
os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
os.system('pip install -q pytesseract')
#!pip install gradio
#pip install -q git+https://github.com/huggingface/transformers.git
#pip install h5py
#pip install -q datasets seqeval
import gradio as gr
import numpy as np
import tensorflow as tf
import torch
import json
from datasets.features import ClassLabel
from transformers import AutoProcessor
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
from datasets import load_dataset # this dataset uses the new Image feature :)
from transformers import LayoutLMv3Processor,LayoutLMv3ForTokenClassification, AutoProcessor ,AutoModelForTokenClassification
#import cv2
from PIL import Image, ImageDraw, ImageFont
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base",apply_ocr = True)
model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-funsd")
dataset = load_dataset("nielsr/funsd", split="test")
image = Image.open(dataset[0]["image_path"]).convert("RGB")
image = Image.open("./invoice.png")
image.save("document1.png")
image = Image.open(dataset[1]["image_path"]).convert("RGB")
image = Image.open("./invoice2.png")
image.save("document2.png")
image = Image.open(dataset[2]["image_path"]).convert("RGB")
image = Image.open("./invoice3.png")
image.save("document3.png")
#dataset = load_dataset("nielsr/funsd-layoutlmv3")
#example = dataset["test"][0]
#example["image"].save("example1.png")
#example1 = dataset["test"][1]
#example1["image"].save("example2.png")
#example2 = dataset["test"][2]
#example2["image"].save("example3.png")
#example2["image"]
labels = dataset.features['ner_tags'].feature.names
#words, boxes, ner_tags = example["tokens"], example["bboxes"], example["ner_tags"]
features = dataset["test"].features
column_names = dataset["test"].column_names
image_column_name = "image"
text_column_name = "tokens"
boxes_column_name = "bboxes"
label_column_name = "ner_tags"
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
id2label = {v: k for v, k in enumerate(labels)}
label2color = {
"question": "blue",
"answer": "green",
"header": "orange",
"other": "violet",
}
#label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
label= label[2:]
if not label:
return 'other'
return label
def process_image(image):
width, height = image.size
# encode
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
offset_mapping = encoding.pop('offset_mapping')
# forward pass
outputs = model(**encoding)
# get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
# only keep non-subword predictions
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
# draw predictions over the image
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction) #.lower()
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
return image
title = "DocumentAI - Extraction using LayoutLMv3 model"
description = "Extraction of Form or Invoice Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
examples =[['document1.png'],['document1.png'],['document1.png']]
css = """.output_image, .input_image {height: 600px !important}"""
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="annotated image"),
title=title,
description=description,
article=article,
examples=examples,
css=css,
analytics_enabled = True, enable_queue=True
)
iface.launch(inline=False, share=False, debug=False)
#iface.launch(inline=False,debug=True) |