File size: 6,079 Bytes
20a3a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b421a4d
20a3a1b
0e7bf2c
20a3a1b
0e7bf2c
20a3a1b
0e7bf2c
20a3a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf830aa
20a3a1b
 
 
 
3e11b40
20a3a1b
bf830aa
20a3a1b
ab5b1b6
335a719
 
 
ab5b1b6
335a719
 
 
 
 
 
 
ab5b1b6
 
 
20a3a1b
335a719
 
20a3a1b
335a719
 
20a3a1b
335a719
 
20a3a1b
3e11b40
20a3a1b
335a719
20a3a1b
335a719
20a3a1b
 
 
 
3e11b40
20a3a1b
 
 
 
 
3e11b40
 
335a719
55fe735
 
 
 
 
 
 
 
20a3a1b
ab5b1b6
20a3a1b
3e11b40
 
 
 
 
 
 
20a3a1b
ab5b1b6
 
 
 
87a6fba
20a3a1b
3e11b40
 
20a3a1b
3e11b40
 
 
20a3a1b
3e11b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a3a1b
 
3e11b40
20a3a1b
 
 
 
335a719
20a3a1b
 
 
 
 
3e11b40
20a3a1b
 
 
 
 
 
 
 
8ef4046
3e11b40
8ef4046
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: utf-8 -*-
"""DocAI_DeploymentGradio.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1USSEj7nHh2n2hUhTJTC0Iwhj6mSR7-mD
"""

import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')

os.system('pip install pyyaml==5.1')

os.system('pip install -q git+https://github.com/huggingface/transformers.git')

os.system('pip install -q datasets seqeval')

os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
os.system('pip install -q pytesseract')

#!pip install gradio

#pip install -q git+https://github.com/huggingface/transformers.git

#pip install h5py

#pip install -q datasets seqeval

import gradio as gr

import numpy as np
import tensorflow as tf

import torch
import json

from datasets.features import ClassLabel
from transformers import AutoProcessor

from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
from datasets import load_dataset # this dataset uses the new Image feature :) 

from transformers import LayoutLMv3Processor,LayoutLMv3ForTokenClassification, AutoProcessor ,AutoModelForTokenClassification

#import cv2
from PIL import Image, ImageDraw, ImageFont

processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base",apply_ocr = True)

model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-funsd")

dataset = load_dataset("nielsr/funsd", split="test")
image = Image.open(dataset[0]["image_path"]).convert("RGB")
image = Image.open("./invoice.png")
image.save("document1.png")

image = Image.open(dataset[1]["image_path"]).convert("RGB")
image = Image.open("./invoice2.png")
image.save("document2.png")

image = Image.open(dataset[2]["image_path"]).convert("RGB")
image = Image.open("./invoice3.png")
image.save("document3.png")


#dataset = load_dataset("nielsr/funsd-layoutlmv3")

#example = dataset["test"][0]
#example["image"].save("example1.png")

#example1 = dataset["test"][1]
#example1["image"].save("example2.png")

#example2 = dataset["test"][2]
#example2["image"].save("example3.png")

#example2["image"]

labels = dataset.features['ner_tags'].feature.names

#words, boxes, ner_tags = example["tokens"], example["bboxes"], example["ner_tags"]

features = dataset["test"].features

column_names = dataset["test"].column_names

image_column_name = "image"
text_column_name = "tokens"
boxes_column_name = "bboxes"
label_column_name = "ner_tags"

# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.

id2label = {v: k for v, k in enumerate(labels)}

label2color = {
    "question": "blue",
    "answer": "green",
    "header": "orange",
    "other": "violet",
}

#label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}

def unnormalize_box(bbox, width, height):
     return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
     ]

def iob_to_label(label):
        label= label[2:]
        if not label:
            return 'other'
        return label

def process_image(image):
    width, height = image.size

    # encode
    encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
    offset_mapping = encoding.pop('offset_mapping')

    # forward pass
    outputs = model(**encoding)

    # get predictions
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    # only keep non-subword predictions
    is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]

    # draw predictions over the image
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()

    label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = iob_to_label(prediction) #.lower()
        draw.rectangle(box, outline=label2color[predicted_label])
        draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
    
    return image



title = "DocumentAI - Extraction using LayoutLMv3 model"
description = "Extraction of Form or Invoice Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."

article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2]  <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>" 

examples =[['document1.png'],['document1.png'],['document1.png']]

css = """.output_image, .input_image {height: 600px !important}"""

iface = gr.Interface(fn=process_image, 
                     inputs=gr.inputs.Image(type="pil"), 
                     outputs=gr.outputs.Image(type="pil", label="annotated image"),
                     title=title,
                     description=description,
                     article=article,
                     examples=examples,
                     css=css,
                     analytics_enabled = True, enable_queue=True
                     )

iface.launch(inline=False, share=False, debug=False)

#iface.launch(inline=False,debug=True)