Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,230 Bytes
ae18532 0d34381 ae18532 b7bdcdb ae18532 6ad0411 b7bdcdb 6ad0411 b7bdcdb 80551a9 b7bdcdb 6ad0411 b7bdcdb bb42c8d b7bdcdb bb42c8d b7bdcdb 6ad0411 b00d4fe 6ad0411 b7bdcdb 6ad0411 b7bdcdb 6ad0411 b7bdcdb 80551a9 b7bdcdb 6ad0411 b7bdcdb 6ad0411 b00d4fe 80551a9 b7bdcdb 6ad0411 b00d4fe b7bdcdb b00d4fe b7bdcdb b00d4fe b7bdcdb 6ad0411 b7bdcdb 80551a9 b7bdcdb ae18532 b7bdcdb bb42c8d b7bdcdb eb9126a ae18532 b7bdcdb b00d4fe eb9126a ae18532 b7bdcdb ae18532 b7bdcdb eb9126a b7bdcdb 6ad0411 eb9126a b7bdcdb ae18532 6ad0411 b7bdcdb 0d34381 6ad0411 0d34381 6ad0411 b7bdcdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL
from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
from .utils import timer
class Loader:
def __init__(self):
self.model = ""
self.vae = None
self.refiner = None
self.pipeline = None
self.upscaler = None
self.log = Logger("Loader")
self.device = torch.device("cuda") # always called in CUDA context
def should_unload_deepcache(self, cache_interval=1):
has_deepcache = hasattr(self.pipeline, "deepcache")
if has_deepcache and cache_interval == 1:
return True
if has_deepcache and self.pipeline.deepcache.params["cache_interval"] != cache_interval:
return True
return False
def should_unload_upscaler(self, scale=1):
return self.upscaler is not None and self.upscaler.scale != scale
def should_unload_refiner(self, use_refiner=False):
return self.refiner is not None and not use_refiner
def should_unload_pipeline(self, model=""):
return self.pipeline is not None and self.model != model
def should_load_deepcache(self, cache_interval=1):
has_deepcache = hasattr(self.pipeline, "deepcache")
if not has_deepcache and cache_interval > 1:
return True
return False
def should_load_upscaler(self, scale=1):
return self.upscaler is None and scale > 1
def should_load_refiner(self, use_refiner=False):
return self.refiner is None and use_refiner
def should_load_pipeline(self, pipeline_id=""):
if self.pipeline is None:
return True
if not isinstance(self.pipeline, Config.PIPELINES[pipeline_id]):
return True
return False
def should_load_scheduler(self, cls, use_karras=False):
has_karras = hasattr(self.pipeline.scheduler.config, "use_karras_sigmas")
if not isinstance(self.pipeline.scheduler, cls):
return True
if has_karras and self.pipeline.scheduler.config.use_karras_sigmas != use_karras:
return True
return False
def unload_all(self, model, deepcache_interval, scale, use_refiner):
if self.should_unload_deepcache(deepcache_interval):
self.log.info("Disabling DeepCache")
self.pipeline.deepcache.disable()
delattr(self.pipeline, "deepcache")
if self.refiner:
self.refiner.deepcache.disable()
delattr(self.refiner, "deepcache")
if self.should_unload_upscaler(scale):
self.log.info("Unloading upscaler")
self.upscaler = None
if self.should_unload_refiner(use_refiner):
self.log.info("Unloading refiner")
self.refiner = None
if self.should_unload_pipeline(model):
self.log.info(f"Unloading {self.model}")
if self.refiner:
self.refiner.vae = None
self.refiner.scheduler = None
self.refiner.tokenizer_2 = None
self.refiner.text_encoder_2 = None
self.pipeline = None
self.model = ""
def load_deepcache(self, interval=1):
self.log.info("Enabling DeepCache")
self.pipeline.deepcache = DeepCacheSDHelper(pipe=self.pipeline)
self.pipeline.deepcache.set_params(cache_interval=interval)
self.pipeline.deepcache.enable()
if self.refiner:
self.refiner.deepcache = DeepCacheSDHelper(pipe=self.refiner)
self.refiner.deepcache.set_params(cache_interval=interval)
self.refiner.deepcache.enable()
def load_upscaler(self, scale=1):
with timer(f"Loading {scale}x upscaler", logger=self.log.info):
self.upscaler = RealESRGAN(scale, device=self.device)
self.upscaler.load_weights()
def load_refiner(self):
model = Config.REFINER_MODEL
with timer(f"Loading {model}", logger=self.log.info):
refiner_kwargs = {
"variant": "fp16",
"torch_dtype": self.pipeline.dtype,
"add_watermarker": False,
"requires_aesthetics_score": True,
"force_zeros_for_empty_prompt": False,
"vae": self.pipeline.vae,
"scheduler": self.pipeline.scheduler,
"tokenizer_2": self.pipeline.tokenizer_2,
"text_encoder_2": self.pipeline.text_encoder_2,
}
Pipeline = Config.PIPELINES["img2img"]
self.refiner = Pipeline.from_pretrained(model, **refiner_kwargs).to(self.device)
self.refiner.set_progress_bar_config(disable=True)
def load_pipeline(self, pipeline_id, model, **kwargs):
Pipeline = Config.PIPELINES[pipeline_id]
# Load VAE first
if self.vae is None:
self.vae = AutoencoderKL.from_pretrained(
Config.VAE_MODEL,
torch_dtype=torch.float32, # vae is full-precision
).to(self.device)
kwargs["vae"] = self.vae
# Load from scratch
if self.pipeline is None:
with timer(f"Loading {model} ({pipeline_id})", logger=self.log.info):
if model in Config.SINGLE_FILE_MODELS:
checkpoint = Config.HF_REPOS[model][0]
self.pipeline = Pipeline.from_single_file(
f"https://huggingface.co/{model}/{checkpoint}",
**kwargs,
).to(self.device)
else:
self.pipeline = Pipeline.from_pretrained(model, **kwargs).to(self.device)
# Change to a different one
else:
with timer(f"Changing pipeline to {pipeline_id}", logger=self.log.info):
self.pipeline = Pipeline.from_pipe(self.pipeline).to(self.device)
# Update model and disable terminal progress bars
self.model = model
self.pipeline.set_progress_bar_config(disable=True)
def load_scheduler(self, cls, use_karras=False, **kwargs):
self.log.info(f"Loading {cls.__name__}{' with Karras' if use_karras else ''}")
self.pipeline.scheduler = cls(**kwargs)
if self.refiner is not None:
self.refiner.scheduler = self.pipeline.scheduler
def load(self, pipeline_id, model, scheduler, deepcache_interval, scale, use_karras, use_refiner):
Scheduler = Config.SCHEDULERS[scheduler]
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
}
if scheduler not in ["Euler a"]:
scheduler_kwargs["use_karras_sigmas"] = use_karras
pipeline_kwargs = {
"torch_dtype": torch.float16,
"add_watermarker": False,
"scheduler": Scheduler(**scheduler_kwargs),
}
# Single-file models don't need a variant
if model not in Config.SINGLE_FILE_MODELS:
pipeline_kwargs["variant"] = "fp16"
else:
pipeline_kwargs["variant"] = None
# Unload
self.unload_all(model, deepcache_interval, scale, use_refiner)
# Load
if self.should_load_pipeline(pipeline_id):
self.load_pipeline(pipeline_id, model, **pipeline_kwargs)
if self.should_load_refiner(use_refiner):
self.load_refiner()
if self.should_load_scheduler(Scheduler, use_karras):
self.load_scheduler(Scheduler, use_karras, **scheduler_kwargs)
if self.should_load_deepcache(deepcache_interval):
self.load_deepcache(deepcache_interval)
if self.should_load_upscaler(scale):
self.load_upscaler(scale)
# Get a singleton or a new instance of the Loader
def get_loader(singleton=False):
if not singleton:
return Loader()
else:
if not hasattr(get_loader, "_instance"):
get_loader._instance = Loader()
assert isinstance(get_loader._instance, Loader)
return get_loader._instance
|