File size: 8,230 Bytes
ae18532
 
 
 
 
0d34381
ae18532
b7bdcdb
ae18532
 
 
6ad0411
 
b7bdcdb
6ad0411
 
 
 
b7bdcdb
80551a9
b7bdcdb
6ad0411
b7bdcdb
bb42c8d
b7bdcdb
bb42c8d
 
 
b7bdcdb
 
 
 
 
 
6ad0411
b00d4fe
6ad0411
b7bdcdb
 
 
 
 
6ad0411
 
 
 
b7bdcdb
 
 
 
 
6ad0411
b7bdcdb
80551a9
 
 
b7bdcdb
 
 
 
 
 
 
6ad0411
b7bdcdb
6ad0411
 
 
 
 
 
 
 
 
b00d4fe
 
80551a9
b7bdcdb
 
 
 
6ad0411
b00d4fe
 
 
 
 
 
 
b7bdcdb
b00d4fe
b7bdcdb
 
 
 
 
 
 
 
 
 
 
 
 
 
b00d4fe
b7bdcdb
6ad0411
b7bdcdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80551a9
b7bdcdb
 
 
 
ae18532
b7bdcdb
 
 
 
 
 
 
 
 
bb42c8d
b7bdcdb
eb9126a
 
ae18532
 
 
 
 
 
 
 
b7bdcdb
 
 
b00d4fe
eb9126a
ae18532
b7bdcdb
ae18532
 
b7bdcdb
eb9126a
 
 
 
 
 
b7bdcdb
6ad0411
eb9126a
b7bdcdb
 
ae18532
6ad0411
b7bdcdb
 
 
 
0d34381
6ad0411
 
0d34381
6ad0411
 
b7bdcdb
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL

from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
from .utils import timer


class Loader:
    def __init__(self):
        self.model = ""
        self.vae = None
        self.refiner = None
        self.pipeline = None
        self.upscaler = None
        self.log = Logger("Loader")
        self.device = torch.device("cuda")  # always called in CUDA context

    def should_unload_deepcache(self, cache_interval=1):
        has_deepcache = hasattr(self.pipeline, "deepcache")
        if has_deepcache and cache_interval == 1:
            return True
        if has_deepcache and self.pipeline.deepcache.params["cache_interval"] != cache_interval:
            return True
        return False

    def should_unload_upscaler(self, scale=1):
        return self.upscaler is not None and self.upscaler.scale != scale

    def should_unload_refiner(self, use_refiner=False):
        return self.refiner is not None and not use_refiner

    def should_unload_pipeline(self, model=""):
        return self.pipeline is not None and self.model != model

    def should_load_deepcache(self, cache_interval=1):
        has_deepcache = hasattr(self.pipeline, "deepcache")
        if not has_deepcache and cache_interval > 1:
            return True
        return False

    def should_load_upscaler(self, scale=1):
        return self.upscaler is None and scale > 1

    def should_load_refiner(self, use_refiner=False):
        return self.refiner is None and use_refiner

    def should_load_pipeline(self, pipeline_id=""):
        if self.pipeline is None:
            return True
        if not isinstance(self.pipeline, Config.PIPELINES[pipeline_id]):
            return True
        return False

    def should_load_scheduler(self, cls, use_karras=False):
        has_karras = hasattr(self.pipeline.scheduler.config, "use_karras_sigmas")
        if not isinstance(self.pipeline.scheduler, cls):
            return True
        if has_karras and self.pipeline.scheduler.config.use_karras_sigmas != use_karras:
            return True
        return False

    def unload_all(self, model, deepcache_interval, scale, use_refiner):
        if self.should_unload_deepcache(deepcache_interval):
            self.log.info("Disabling DeepCache")
            self.pipeline.deepcache.disable()
            delattr(self.pipeline, "deepcache")
            if self.refiner:
                self.refiner.deepcache.disable()
                delattr(self.refiner, "deepcache")

        if self.should_unload_upscaler(scale):
            self.log.info("Unloading upscaler")
            self.upscaler = None

        if self.should_unload_refiner(use_refiner):
            self.log.info("Unloading refiner")
            self.refiner = None

        if self.should_unload_pipeline(model):
            self.log.info(f"Unloading {self.model}")
            if self.refiner:
                self.refiner.vae = None
                self.refiner.scheduler = None
                self.refiner.tokenizer_2 = None
                self.refiner.text_encoder_2 = None
            self.pipeline = None
            self.model = ""

    def load_deepcache(self, interval=1):
        self.log.info("Enabling DeepCache")
        self.pipeline.deepcache = DeepCacheSDHelper(pipe=self.pipeline)
        self.pipeline.deepcache.set_params(cache_interval=interval)
        self.pipeline.deepcache.enable()
        if self.refiner:
            self.refiner.deepcache = DeepCacheSDHelper(pipe=self.refiner)
            self.refiner.deepcache.set_params(cache_interval=interval)
            self.refiner.deepcache.enable()

    def load_upscaler(self, scale=1):
        with timer(f"Loading {scale}x upscaler", logger=self.log.info):
            self.upscaler = RealESRGAN(scale, device=self.device)
            self.upscaler.load_weights()

    def load_refiner(self):
        model = Config.REFINER_MODEL
        with timer(f"Loading {model}", logger=self.log.info):
            refiner_kwargs = {
                "variant": "fp16",
                "torch_dtype": self.pipeline.dtype,
                "add_watermarker": False,
                "requires_aesthetics_score": True,
                "force_zeros_for_empty_prompt": False,
                "vae": self.pipeline.vae,
                "scheduler": self.pipeline.scheduler,
                "tokenizer_2": self.pipeline.tokenizer_2,
                "text_encoder_2": self.pipeline.text_encoder_2,
            }
            Pipeline = Config.PIPELINES["img2img"]
            self.refiner = Pipeline.from_pretrained(model, **refiner_kwargs).to(self.device)
            self.refiner.set_progress_bar_config(disable=True)

    def load_pipeline(self, pipeline_id, model, **kwargs):
        Pipeline = Config.PIPELINES[pipeline_id]

        # Load VAE first
        if self.vae is None:
            self.vae = AutoencoderKL.from_pretrained(
                Config.VAE_MODEL,
                torch_dtype=torch.float32,  # vae is full-precision
            ).to(self.device)

        kwargs["vae"] = self.vae

        # Load from scratch
        if self.pipeline is None:
            with timer(f"Loading {model} ({pipeline_id})", logger=self.log.info):
                if model in Config.SINGLE_FILE_MODELS:
                    checkpoint = Config.HF_REPOS[model][0]
                    self.pipeline = Pipeline.from_single_file(
                        f"https://huggingface.co/{model}/{checkpoint}",
                        **kwargs,
                    ).to(self.device)
                else:
                    self.pipeline = Pipeline.from_pretrained(model, **kwargs).to(self.device)

        # Change to a different one
        else:
            with timer(f"Changing pipeline to {pipeline_id}", logger=self.log.info):
                self.pipeline = Pipeline.from_pipe(self.pipeline).to(self.device)

        # Update model and disable terminal progress bars
        self.model = model
        self.pipeline.set_progress_bar_config(disable=True)

    def load_scheduler(self, cls, use_karras=False, **kwargs):
        self.log.info(f"Loading {cls.__name__}{' with Karras' if use_karras else ''}")
        self.pipeline.scheduler = cls(**kwargs)
        if self.refiner is not None:
            self.refiner.scheduler = self.pipeline.scheduler

    def load(self, pipeline_id, model, scheduler, deepcache_interval, scale, use_karras, use_refiner):
        Scheduler = Config.SCHEDULERS[scheduler]

        scheduler_kwargs = {
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "beta_schedule": "scaled_linear",
            "timestep_spacing": "leading",
            "steps_offset": 1,
        }

        if scheduler not in ["Euler a"]:
            scheduler_kwargs["use_karras_sigmas"] = use_karras

        pipeline_kwargs = {
            "torch_dtype": torch.float16,
            "add_watermarker": False,
            "scheduler": Scheduler(**scheduler_kwargs),
        }

        # Single-file models don't need a variant
        if model not in Config.SINGLE_FILE_MODELS:
            pipeline_kwargs["variant"] = "fp16"
        else:
            pipeline_kwargs["variant"] = None

        # Unload
        self.unload_all(model, deepcache_interval, scale, use_refiner)

        # Load
        if self.should_load_pipeline(pipeline_id):
            self.load_pipeline(pipeline_id, model, **pipeline_kwargs)

        if self.should_load_refiner(use_refiner):
            self.load_refiner()

        if self.should_load_scheduler(Scheduler, use_karras):
            self.load_scheduler(Scheduler, use_karras, **scheduler_kwargs)

        if self.should_load_deepcache(deepcache_interval):
            self.load_deepcache(deepcache_interval)

        if self.should_load_upscaler(scale):
            self.load_upscaler(scale)


# Get a singleton or a new instance of the Loader
def get_loader(singleton=False):
    if not singleton:
        return Loader()
    else:
        if not hasattr(get_loader, "_instance"):
            get_loader._instance = Loader()
        assert isinstance(get_loader._instance, Loader)
        return get_loader._instance