Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,672 Bytes
ae18532 163a3a9 ae18532 80551a9 ae18532 c871e5f ae18532 163a3a9 ae18532 163a3a9 ae18532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# BSD 3-Clause License
#
# Copyright (c) 2021, Sberbank AI
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import einops
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
# https://huggingface.co/ai-forever/Real-ESRGAN
HF_MODELS = {
2: {
"repo_id": "ai-forever/Real-ESRGAN",
"filename": "RealESRGAN_x2.pth",
},
4: {
"repo_id": "ai-forever/Real-ESRGAN",
"filename": "RealESRGAN_x4.pth",
},
# 8: {
# "repo_id": "ai-forever/Real-ESRGAN",
# "filename": "RealESRGAN_x8.pth",
# },
}
def pad_reflect(image, pad_size):
image_size = image.shape
height, width = image_size[:2]
new_image = np.zeros([height + pad_size * 2, width + pad_size * 2, image_size[2]]).astype(np.uint8)
new_image[pad_size:-pad_size, pad_size:-pad_size, :] = image
new_image[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) # # top
new_image[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) # # bottom
new_image[:, 0:pad_size, :] = np.flip(new_image[:, pad_size : pad_size * 2, :], axis=1) # # left
new_image[:, -pad_size:, :] = np.flip(new_image[:, -pad_size * 2 : -pad_size, :], axis=1) # right
return new_image
def unpad_image(image, pad_size):
return image[pad_size:-pad_size, pad_size:-pad_size, :]
def pad_patch(image_patch, padding_size, channel_last=True):
if channel_last:
return np.pad(
image_patch,
((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
"edge",
)
else:
return np.pad(
image_patch,
((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
"edge",
)
def unpad_patches(image_patches, padding_size):
return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]
def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
xmax, ymax, _ = image_array.shape
x_remainder = xmax % patch_size
y_remainder = ymax % patch_size
# modulo here is to avoid extending of patch_size instead of 0
x_extend = (patch_size - x_remainder) % patch_size
y_extend = (patch_size - y_remainder) % patch_size
# make sure the image is divisible into regular patches
extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), "edge")
# add padding around the image to simplify computations
padded_image = pad_patch(extended_image, padding_size, channel_last=True)
patches = []
xmax, ymax, _ = padded_image.shape
x_lefts = range(padding_size, xmax - padding_size, patch_size)
y_tops = range(padding_size, ymax - padding_size, patch_size)
for x in x_lefts:
for y in y_tops:
x_left = x - padding_size
y_top = y - padding_size
x_right = x + patch_size + padding_size
y_bottom = y + patch_size + padding_size
patch = padded_image[x_left:x_right, y_top:y_bottom, :]
patches.append(patch)
return np.array(patches), padded_image.shape
def stitch_together(patches, padded_image_shape, target_shape, padding_size=4):
xmax, ymax, _ = padded_image_shape
patches = unpad_patches(patches, padding_size)
patch_size = patches.shape[1]
n_patches_per_row = ymax // patch_size
complete_image = np.zeros((xmax, ymax, 3))
row = -1
col = 0
for i in range(len(patches)):
if i % n_patches_per_row == 0:
row += 1
col = 0
complete_image[
row * patch_size : (row + 1) * patch_size, col * patch_size : (col + 1) * patch_size, :
] = patches[i]
col += 1
return complete_image[0 : target_shape[0], 0 : target_shape[1], :]
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
def make_layer(basic_block, num_basic_block, **kwarg):
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
def pixel_unshuffle(x, scale):
_, _, h, w = x.shape
assert h % scale == 0 and w % scale == 0, "Height and width must be divisible by scale"
return einops.rearrange(
x,
"b c (h s1) (w s2) -> b (c s1 s2) h w",
s1=scale,
s2=scale,
)
class ResidualDenseBlock(nn.Module):
def __init__(self, num_feat=64, num_grow_ch=32):
super(ResidualDenseBlock, self).__init__()
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x # scale the residual by a factor of 0.2
class RRDB(nn.Module):
def __init__(self, num_feat, num_grow_ch=32):
super(RRDB, self).__init__()
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
def forward(self, x):
out = self.rdb1(x)
out = self.rdb2(out)
out = self.rdb3(out)
return out * 0.2 + x # scale the residual by a factor of 0.2
class RRDBNet(nn.Module):
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
super(RRDBNet, self).__init__()
self.scale = scale
if scale == 2:
num_in_ch = num_in_ch * 4
elif scale == 1:
num_in_ch = num_in_ch * 16
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
if scale == 8:
self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
if self.scale == 2:
feat = pixel_unshuffle(x, scale=2)
elif self.scale == 1:
feat = pixel_unshuffle(x, scale=4)
else:
feat = x
feat = self.conv_first(feat)
body_feat = self.conv_body(self.body(feat))
feat = feat + body_feat
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest")))
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest")))
if self.scale == 8:
feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode="nearest")))
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
return out
class RealESRGAN:
def __init__(self, scale=2, device=None):
self.device = device
self.scale = scale
self.model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=scale,
)
def to(self, device):
self.device = device
self.model.to(device=device)
def load_weights(self):
assert self.scale in [2, 4], "You can download models only with scales: 2, 4"
config = HF_MODELS[self.scale]
cache_path = hf_hub_download(config["repo_id"], filename=config["filename"])
loadnet = torch.load(cache_path, weights_only=True)
if "params" in loadnet:
self.model.load_state_dict(loadnet["params"], strict=True)
elif "params_ema" in loadnet:
self.model.load_state_dict(loadnet["params_ema"], strict=True)
else:
self.model.load_state_dict(loadnet, strict=True)
self.model.eval().to(device=self.device)
@torch.autocast("cuda")
def predict(self, lr_image, batch_size=4, patches_size=192, padding=24, pad_size=15):
if not isinstance(lr_image, np.ndarray):
lr_image = np.array(lr_image)
if lr_image.min() < 0.0:
lr_image = (lr_image + 1.0) / 2.0
if lr_image.max() <= 1.0:
lr_image = lr_image * 255.0
lr_image = pad_reflect(lr_image, pad_size)
patches, p_shape = split_image_into_overlapping_patches(
lr_image,
patch_size=patches_size,
padding_size=padding,
)
patches = torch.Tensor(patches / 255.0)
image = einops.rearrange(patches, "b h w c -> b c h w").to(device=self.device)
with torch.inference_mode():
res = self.model(image[0:batch_size])
for i in range(batch_size, image.shape[0], batch_size):
res = torch.cat((res, self.model(image[i : i + batch_size])), 0)
scale = self.scale
sr_image = einops.rearrange(res.clamp(0, 1), "b c h w -> b h w c").cpu().numpy()
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
sr_image = stitch_together(
sr_image,
padded_image_shape=padded_size_scaled,
target_shape=scaled_image_shape,
padding_size=padding * scale,
)
sr_image = (sr_image * 255).astype(np.uint8)
sr_image = unpad_image(sr_image, pad_size * scale)
sr_image = Image.fromarray(sr_image)
return sr_image
|