File size: 7,264 Bytes
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128e78
 
 
 
 
 
 
 
 
 
 
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
 
1128e78
4d6f2bc
 
 
 
 
1128e78
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128e78
4d6f2bc
 
4c2b2fd
4d6f2bc
 
1128e78
4d6f2bc
 
 
1128e78
 
4d6f2bc
 
 
1128e78
 
 
 
 
 
 
 
 
4d6f2bc
1128e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6f2bc
1128e78
 
 
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128e78
4d6f2bc
 
 
 
1128e78
4d6f2bc
1128e78
 
 
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128e78
 
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
1128e78
 
 
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128e78
 
 
 
4d6f2bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import re
from datetime import datetime
from itertools import product
from os import environ
from warnings import filterwarnings

import spaces
import torch
from compel import Compel
from diffusers import (
    DEISMultistepScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
)
from diffusers.models import AutoencoderTiny

ZERO_GPU = (
    environ.get("SPACES_ZERO_GPU", "").lower() == "true"
    or environ.get("SPACES_ZERO_GPU", "") == "1"
)

TORCH_DTYPE = (
    torch.bfloat16
    if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
    else torch.float16
)

# some models use the deprecated CLIPFeatureExtractor class
# should use CLIPImageProcessor instead
filterwarnings("ignore", category=FutureWarning, module="transformers")


class Loader:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(Loader, cls).__new__(cls)
            cls._instance.cpu = torch.device("cpu")
            cls._instance.gpu = torch.device("cuda")
            cls._instance.pipe = None
        return cls._instance

    def load(self, model, scheduler, karras):
        model_lower = model.lower()

        schedulers = {
            "DEIS 2M": DEISMultistepScheduler,
            "DPM++ 2M": DPMSolverMultistepScheduler,
            "DPM2 a": KDPM2AncestralDiscreteScheduler,
            "Euler a": EulerAncestralDiscreteScheduler,
            "Heun": HeunDiscreteScheduler,
            "LMS": LMSDiscreteScheduler,
            "PNDM": PNDMScheduler,
        }

        scheduler_kwargs = {
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "beta_schedule": "scaled_linear",
            "timestep_spacing": "leading",
            "steps_offset": 1,
            "use_karras_sigmas": karras,
        }

        if scheduler == "PNDM" or scheduler == "Euler a":
            del scheduler_kwargs["use_karras_sigmas"]

        pipe_kwargs = {
            "pretrained_model_name_or_path": model_lower,
            "requires_safety_checker": False,
            "safety_checker": None,
            "scheduler": schedulers[scheduler](**scheduler_kwargs),
            "torch_dtype": TORCH_DTYPE,
            "use_safetensors": True,
        }

        # already loaded
        if self.pipe is not None:
            model_name = self.pipe.config._name_or_path
            same_model = model_name.lower() == model_lower
            same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
            same_karras = (
                not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
                or self.pipe.scheduler.config.use_karras_sigmas == karras
            )

            if same_model:
                if not same_scheduler:
                    print(f"Swapping scheduler to {scheduler}...")
                elif not same_karras:
                    print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
                elif not (same_scheduler and same_karras):
                    self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
                return self.pipe
            else:
                print(f"Unloading {model_name.lower()}...")
                self.pipe = None
                torch.cuda.empty_cache()

        # no fp16 available
        if not ZERO_GPU and model_lower not in [
            "sg161222/realistic_vision_v5.1_novae",
            "prompthero/openjourney-v4",
            "linaqruf/anything-v3-1",
        ]:
            pipe_kwargs["variant"] = "fp16"

        # uses special VAE
        if model_lower not in ["linaqruf/anything-v3-1"]:
            pipe_kwargs["vae"] = AutoencoderTiny.from_pretrained(
                "madebyollin/taesd",
                torch_dtype=TORCH_DTYPE,
                use_safetensors=True,
            )

        print(f"Loading {model_lower}...")
        self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
        return self.pipe


# prepare prompts for Compel
def join_prompt(prompt: str) -> str:
    lines = prompt.strip().splitlines()
    return '("' + '", "'.join(lines) + '").and()' if len(lines) > 1 else prompt


# parse prompts with arrays
def parse_prompt(prompt: str) -> list[str]:
    joined_prompt = join_prompt(prompt)
    arrays = re.findall(r"\[\[(.*?)\]\]", joined_prompt)

    if not arrays:
        return [joined_prompt]

    tokens = [item.split(",") for item in arrays]
    combinations = list(product(*tokens))
    prompts = []

    for combo in combinations:
        current_prompt = joined_prompt
        for i, token in enumerate(combo):
            current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)

        prompts.append(current_prompt)
    return prompts


@spaces.GPU(duration=30)
def generate(
    positive_prompt,
    negative_prompt="",
    seed=None,
    model="lykon/dreamshaper-8",
    scheduler="DEIS 2M",
    aspect_ratio="1:1",
    guidance_scale=7.5,
    inference_steps=30,
    karras=True,
    num_images=1,
    increment_seed=True,
    Error=Exception,
):
    if not torch.cuda.is_available():
        raise Error("CUDA not available")

    # image dimensions
    aspect_ratios = {
        "16:9": (640, 360),
        "4:3": (576, 432),
        "1:1": (512, 512),
        "3:4": (432, 576),
        "9:16": (360, 640),
    }
    width, height = aspect_ratios[aspect_ratio]

    with torch.inference_mode():
        loader = Loader()
        pipe = loader.load(model, scheduler, karras)

        # prompt embeds
        compel = Compel(
            tokenizer=pipe.tokenizer,
            text_encoder=pipe.text_encoder,
            truncate_long_prompts=False,
            device=pipe.device,
            dtype_for_device_getter=lambda _: TORCH_DTYPE,
        )

        neg_prompt = join_prompt(negative_prompt)
        neg_embeds = compel(neg_prompt)

        if seed is None:
            seed = int(datetime.now().timestamp())

        current_seed = seed
        images = []

        for i in range(num_images):
            generator = torch.Generator(device=pipe.device).manual_seed(current_seed)

            # run the prompt for this iteration
            all_positive_prompts = parse_prompt(positive_prompt)
            prompt_index = i % len(all_positive_prompts)
            pos_prompt = all_positive_prompts[prompt_index]
            pos_embeds = compel(pos_prompt)
            pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length(
                [pos_embeds, neg_embeds]
            )

            result = pipe(
                width=width,
                height=height,
                prompt_embeds=pos_embeds,
                negative_prompt_embeds=neg_embeds,
                num_inference_steps=inference_steps,
                guidance_scale=guidance_scale,
                generator=generator,
            )
            images.append((result.images[0], str(current_seed)))

            if increment_seed:
                current_seed += 1

        if ZERO_GPU:
            # spaces always start fresh
            loader.pipe = None

        return images