Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,264 Bytes
4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 4c2b2fd 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc 1128e78 4d6f2bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import re
from datetime import datetime
from itertools import product
from os import environ
from warnings import filterwarnings
import spaces
import torch
from compel import Compel
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
)
from diffusers.models import AutoencoderTiny
ZERO_GPU = (
environ.get("SPACES_ZERO_GPU", "").lower() == "true"
or environ.get("SPACES_ZERO_GPU", "") == "1"
)
TORCH_DTYPE = (
torch.bfloat16
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
else torch.float16
)
# some models use the deprecated CLIPFeatureExtractor class
# should use CLIPImageProcessor instead
filterwarnings("ignore", category=FutureWarning, module="transformers")
class Loader:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(Loader, cls).__new__(cls)
cls._instance.cpu = torch.device("cpu")
cls._instance.gpu = torch.device("cuda")
cls._instance.pipe = None
return cls._instance
def load(self, model, scheduler, karras):
model_lower = model.lower()
schedulers = {
"DEIS 2M": DEISMultistepScheduler,
"DPM++ 2M": DPMSolverMultistepScheduler,
"DPM2 a": KDPM2AncestralDiscreteScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"Heun": HeunDiscreteScheduler,
"LMS": LMSDiscreteScheduler,
"PNDM": PNDMScheduler,
}
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
"use_karras_sigmas": karras,
}
if scheduler == "PNDM" or scheduler == "Euler a":
del scheduler_kwargs["use_karras_sigmas"]
pipe_kwargs = {
"pretrained_model_name_or_path": model_lower,
"requires_safety_checker": False,
"safety_checker": None,
"scheduler": schedulers[scheduler](**scheduler_kwargs),
"torch_dtype": TORCH_DTYPE,
"use_safetensors": True,
}
# already loaded
if self.pipe is not None:
model_name = self.pipe.config._name_or_path
same_model = model_name.lower() == model_lower
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
if same_model:
if not same_scheduler:
print(f"Swapping scheduler to {scheduler}...")
elif not same_karras:
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
elif not (same_scheduler and same_karras):
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
return self.pipe
else:
print(f"Unloading {model_name.lower()}...")
self.pipe = None
torch.cuda.empty_cache()
# no fp16 available
if not ZERO_GPU and model_lower not in [
"sg161222/realistic_vision_v5.1_novae",
"prompthero/openjourney-v4",
"linaqruf/anything-v3-1",
]:
pipe_kwargs["variant"] = "fp16"
# uses special VAE
if model_lower not in ["linaqruf/anything-v3-1"]:
pipe_kwargs["vae"] = AutoencoderTiny.from_pretrained(
"madebyollin/taesd",
torch_dtype=TORCH_DTYPE,
use_safetensors=True,
)
print(f"Loading {model_lower}...")
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
return self.pipe
# prepare prompts for Compel
def join_prompt(prompt: str) -> str:
lines = prompt.strip().splitlines()
return '("' + '", "'.join(lines) + '").and()' if len(lines) > 1 else prompt
# parse prompts with arrays
def parse_prompt(prompt: str) -> list[str]:
joined_prompt = join_prompt(prompt)
arrays = re.findall(r"\[\[(.*?)\]\]", joined_prompt)
if not arrays:
return [joined_prompt]
tokens = [item.split(",") for item in arrays]
combinations = list(product(*tokens))
prompts = []
for combo in combinations:
current_prompt = joined_prompt
for i, token in enumerate(combo):
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
prompts.append(current_prompt)
return prompts
@spaces.GPU(duration=30)
def generate(
positive_prompt,
negative_prompt="",
seed=None,
model="lykon/dreamshaper-8",
scheduler="DEIS 2M",
aspect_ratio="1:1",
guidance_scale=7.5,
inference_steps=30,
karras=True,
num_images=1,
increment_seed=True,
Error=Exception,
):
if not torch.cuda.is_available():
raise Error("CUDA not available")
# image dimensions
aspect_ratios = {
"16:9": (640, 360),
"4:3": (576, 432),
"1:1": (512, 512),
"3:4": (432, 576),
"9:16": (360, 640),
}
width, height = aspect_ratios[aspect_ratio]
with torch.inference_mode():
loader = Loader()
pipe = loader.load(model, scheduler, karras)
# prompt embeds
compel = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
truncate_long_prompts=False,
device=pipe.device,
dtype_for_device_getter=lambda _: TORCH_DTYPE,
)
neg_prompt = join_prompt(negative_prompt)
neg_embeds = compel(neg_prompt)
if seed is None:
seed = int(datetime.now().timestamp())
current_seed = seed
images = []
for i in range(num_images):
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
# run the prompt for this iteration
all_positive_prompts = parse_prompt(positive_prompt)
prompt_index = i % len(all_positive_prompts)
pos_prompt = all_positive_prompts[prompt_index]
pos_embeds = compel(pos_prompt)
pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length(
[pos_embeds, neg_embeds]
)
result = pipe(
width=width,
height=height,
prompt_embeds=pos_embeds,
negative_prompt_embeds=neg_embeds,
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
generator=generator,
)
images.append((result.images[0], str(current_seed)))
if increment_seed:
current_seed += 1
if ZERO_GPU:
# spaces always start fresh
loader.pipe = None
return images
|