Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,968 Bytes
9edebae 6681256 9edebae 4d6f2bc 48c31e7 98afd85 48c31e7 61ad3d2 4d6f2bc 9edebae aafe7f2 05246f1 51fab87 05246f1 4d6f2bc 6681256 4d6f2bc 6681256 039ff6d 98afd85 6681256 aafe7f2 4d6f2bc 13b498b 52bf5e0 039ff6d 0acf94b 9e8b99d aafe7f2 b7fd57e 98afd85 7e19bd9 9edebae 7e19bd9 1e250ff 98afd85 1e250ff 98afd85 7e19bd9 039ff6d 069fc81 039ff6d 0acf94b 039ff6d 0acf94b 52bf5e0 069fc81 7e19bd9 039ff6d 069fc81 767128b 039ff6d 069fc81 039ff6d 98afd85 7e19bd9 039ff6d 0acf94b 039ff6d 9e8b99d 52bf5e0 039ff6d aafe7f2 7e19bd9 039ff6d 98afd85 039ff6d 9edebae 7e19bd9 039ff6d 51fab87 7e19bd9 51fab87 039ff6d 52bf5e0 039ff6d 52bf5e0 9e8b99d 52bf5e0 039ff6d 13b498b 52bf5e0 069fc81 039ff6d 52bf5e0 039ff6d 9e8b99d 039ff6d c348e53 52bf5e0 13b498b 52bf5e0 069fc81 61ad3d2 1e250ff 9edebae 52bf5e0 9edebae 069fc81 9edebae aafe7f2 9edebae 7e19bd9 4470520 1e250ff 61ad3d2 52bf5e0 b7fd57e 13b498b 52bf5e0 069fc81 22a0476 b7fd57e 13b498b 52bf5e0 069fc81 48c31e7 c348e53 60849d7 61ad3d2 c348e53 98afd85 039ff6d c348e53 1e250ff c348e53 767128b 4d6f2bc 48c31e7 4d6f2bc 61ad3d2 4d6f2bc 1128e78 48c31e7 9edebae 4d6f2bc 9edebae 767128b 7049262 767128b 4470520 767128b 9edebae 7a7cda5 98afd85 1e250ff 9edebae 4470520 4d6f2bc 9edebae 60849d7 22a0476 60849d7 7e19bd9 9edebae 60849d7 069fc81 60849d7 aafe7f2 60849d7 9edebae 60849d7 52bf5e0 9e8b99d 52bf5e0 9e8b99d 52bf5e0 9e8b99d 52bf5e0 9e8b99d 52bf5e0 9e8b99d 52bf5e0 9e8b99d 52bf5e0 9e8b99d 52bf5e0 9e8b99d 52bf5e0 9e8b99d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import gc
from threading import Lock
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import ControlNetModel
from diffusers.models import AutoencoderKL, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
from .utils import clear_cuda_cache, safe_progress, timer
class Loader:
_instance = None
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.pipe = None
cls._instance.model = None
cls._instance.upscaler = None
cls._instance.controlnet = None
cls._instance.ip_adapter = None
cls._instance.log = Logger("Loader")
return cls._instance
@property
def _is_kl_vae(self):
if self.pipe is not None:
vae_type = type(self.pipe.vae)
return issubclass(vae_type, AutoencoderKL)
return False
@property
def _is_tiny_vae(self):
if self.pipe is not None:
vae_type = type(self.pipe.vae)
return issubclass(vae_type, AutoencoderTiny)
return False
@property
def _has_freeu(self):
if self.pipe is not None:
attrs = ["b1", "b2", "s1", "s2"]
block = self.pipe.unet.up_blocks[0]
return all(getattr(block, attr, None) is not None for attr in attrs)
return False
def _should_unload_upscaler(self, scale=1):
if self.upscaler is not None and self.upscaler.scale != scale:
return True
return False
def _should_unload_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if has_deepcache and interval == 1:
return True
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
return True
return False
def _should_unload_freeu(self, freeu=False):
if self._has_freeu and not freeu:
return True
return False
def _should_unload_ip_adapter(self, model="", ip_adapter=""):
# unload if model changed
if self.model and self.model.lower() != model.lower():
return True
if self.ip_adapter and not ip_adapter:
return True
return False
def _should_unload_controlnet(self, kind="", controlnet=""):
if self.controlnet is None:
return False
if self.controlnet.lower() != controlnet.lower():
return True
if not kind.startswith("controlnet_"):
return True
return False
def _should_unload_pipeline(self, kind="", model="", controlnet=""):
if self.pipe is None:
return False
if self.model.lower() != model.lower():
return True
if kind == "txt2img" and not isinstance(self.pipe, Config.PIPELINES["txt2img"]):
return True
if kind == "img2img" and not isinstance(self.pipe, Config.PIPELINES["img2img"]):
return True
if kind == "controlnet_txt2img" and not isinstance(
self.pipe,
Config.PIPELINES["controlnet_txt2img"],
):
return True
if kind == "controlnet_img2img" and not isinstance(
self.pipe,
Config.PIPELINES["controlnet_img2img"],
):
return True
if self._should_unload_controlnet(kind, controlnet):
return True
return False
def _unload_upscaler(self):
if self.upscaler is not None:
with timer(f"Unloading {self.upscaler.scale}x upscaler", logger=self.log.info):
self.upscaler.to("cpu")
def _unload_deepcache(self):
if self.pipe.deepcache is not None:
self.log.info("Disabling DeepCache")
self.pipe.deepcache.disable()
delattr(self.pipe, "deepcache")
def _unload_freeu(self, freeu=False):
if self._has_freeu and not freeu:
self.log.info("Disabling FreeU")
self.pipe.disable_freeu()
# Copied from https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300
def _unload_ip_adapter(self):
if self.ip_adapter is not None:
with timer("Unloading IP-Adapter", logger=self.log.info):
if not isinstance(self.pipe, Config.PIPELINES["img2img"]):
self.pipe.image_encoder = None
self.pipe.register_to_config(image_encoder=[None, None])
self.pipe.feature_extractor = None
self.pipe.unet.encoder_hid_proj = None
self.pipe.unet.config.encoder_hid_dim_type = None
self.pipe.register_to_config(feature_extractor=[None, None])
attn_procs = {}
for name, value in self.pipe.unet.attn_processors.items():
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
attn_procs[name] = (
attn_processor_class
if isinstance(value, IPAdapterAttnProcessor2_0)
else value.__class__()
)
self.pipe.unet.set_attn_processor(attn_procs)
def _unload_pipeline(self):
if self.pipe is not None:
with timer(f"Unloading {self.model}", logger=self.log.info):
self.pipe.to("cpu")
def _unload(
self,
kind="",
model="",
controlnet="",
ip_adapter="",
deepcache=1,
scale=1,
freeu=False,
):
to_unload = []
if self._should_unload_deepcache(deepcache): # remove deepcache first
self._unload_deepcache()
if self._should_unload_freeu(freeu):
self._unload_freeu()
if self._should_unload_upscaler(scale):
self._unload_upscaler()
to_unload.append("upscaler")
if self._should_unload_ip_adapter(model, ip_adapter):
self._unload_ip_adapter()
to_unload.append("ip_adapter")
if self._should_unload_controlnet(kind, controlnet):
to_unload.append("controlnet")
if self._should_unload_pipeline(kind, model, controlnet):
self._unload_pipeline()
to_unload.append("model")
to_unload.append("pipe")
clear_cuda_cache()
for component in to_unload:
setattr(self, component, None)
gc.collect()
def _should_load_upscaler(self, scale=1):
if self.upscaler is None and scale > 1:
return True
return False
def _should_load_freeu(self, freeu=False):
if not self._has_freeu and freeu:
return True
return False
def _should_load_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if not has_deepcache and interval != 1:
return True
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
return True
return False
def _should_load_ip_adapter(self, ip_adapter=""):
if not self.ip_adapter and ip_adapter:
return True
return False
def _should_load_pipeline(self):
if self.pipe is None:
return True
return False
def _load_upscaler(self, scale=1):
if self._should_load_upscaler(scale):
try:
msg = f"Loading {scale}x upscaler"
with timer(msg, logger=self.log.info):
self.upscaler = RealESRGAN(scale, device=self.pipe.device)
self.upscaler.load_weights()
except Exception as e:
self.log.error(f"Error loading {scale}x upscaler: {e}")
self.upscaler = None
def _load_deepcache(self, interval=1):
if self._should_load_deepcache(interval):
self.log.info("Enabling DeepCache")
self.pipe.deepcache = DeepCacheSDHelper(self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
# https://github.com/ChenyangSi/FreeU
def _load_freeu(self, freeu=False):
if self._should_load_freeu(freeu):
self.log.info("Enabling FreeU")
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
def _load_ip_adapter(self, ip_adapter=""):
if self._should_load_ip_adapter(ip_adapter):
msg = "Loading IP-Adapter"
with timer(msg, logger=self.log.info):
self.pipe.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors",
)
# 50% works the best
self.pipe.set_ip_adapter_scale(0.5)
self.ip_adapter = ip_adapter
def _load_pipeline(
self,
kind,
model,
progress,
**kwargs,
):
pipeline = Config.PIPELINES[kind]
if self._should_load_pipeline():
try:
with timer(f"Loading {model} ({kind})", logger=self.log.info):
self.model = model
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe = pipeline.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
progress,
**kwargs,
).to("cuda")
else:
self.pipe = pipeline.from_pretrained(model, progress, **kwargs).to("cuda")
except Exception as e:
self.log.error(f"Error loading {model}: {e}")
self.model = None
self.pipe = None
return
if not isinstance(self.pipe, pipeline):
self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
if self.pipe is not None:
self.pipe.set_progress_bar_config(disable=progress is not None)
def _load_vae(self, taesd=False, model=""):
# by default all models use KL
if self._is_kl_vae and taesd:
msg = "Loading Tiny VAE"
with timer(msg, logger=self.log.info):
self.pipe.vae = AutoencoderTiny.from_pretrained(
pretrained_model_name_or_path="madebyollin/taesd",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
return
if self._is_tiny_vae and not taesd:
msg = "Loading KL VAE"
with timer(msg, logger=self.log.info):
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe.vae = AutoencoderKL.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
else:
self.pipe.vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=model,
torch_dtype=self.pipe.dtype,
subfolder="vae",
variant="fp16",
).to(self.pipe.device)
def load(
self,
kind,
ip_adapter,
model,
scheduler,
annotator,
deepcache,
scale,
karras,
taesd,
freeu,
progress,
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
scheduler_kwargs = {
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"beta_start": 0.00085,
"beta_end": 0.012,
"steps_offset": 1,
}
if scheduler not in ["DDIM", "Euler a", "PNDM"]:
scheduler_kwargs["use_karras_sigmas"] = karras
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
if scheduler == "DDIM":
scheduler_kwargs["clip_sample"] = False
scheduler_kwargs["set_alpha_to_one"] = False
pipe_kwargs = {
"safety_checker": None,
"requires_safety_checker": False,
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
}
# diffusers fp16 variant
if model.lower() not in Config.MODEL_CHECKPOINTS.keys():
pipe_kwargs["variant"] = "fp16"
else:
pipe_kwargs["variant"] = None
# convert fp32 to bf16 if possible
if model.lower() in ["linaqruf/anything-v3-1"]:
pipe_kwargs["torch_dtype"] = (
torch.bfloat16
if torch.cuda.get_device_properties(device).major >= 8
else torch.float16
)
else:
# defaults to float32
pipe_kwargs["torch_dtype"] = torch.float16
# config maps the repo to the ID: canny -> lllyasviel/control_sd15_canny
if kind.startswith("controlnet_"):
pipe_kwargs["controlnet"] = ControlNetModel.from_pretrained(
Config.ANNOTATORS[annotator],
torch_dtype=torch.float16,
variant="fp16",
)
self.controlnet = annotator
self._unload(kind, model, annotator, ip_adapter, deepcache, scale, freeu)
self._load_pipeline(kind, model, progress, **pipe_kwargs)
# error loading model
if self.pipe is None:
return
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
# same model, different scheduler
if self.model.lower() == model.lower():
if not same_scheduler:
self.log.info(f"Enabling {scheduler} scheduler")
if not same_karras:
self.log.info(f"{'Enabling' if karras else 'Disabling'} Karras sigmas")
if not same_scheduler or not same_karras:
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
CURRENT_STEP = 1
TOTAL_STEPS = sum(
[
self._is_kl_vae and taesd,
self._is_tiny_vae and not taesd,
self._should_load_freeu(freeu),
self._should_load_deepcache(deepcache),
self._should_load_ip_adapter(ip_adapter),
self._should_load_upscaler(scale),
]
)
desc = "Configuring pipeline"
if not self._has_freeu and freeu:
self._load_freeu(freeu)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._should_load_deepcache(deepcache):
self._load_deepcache(deepcache)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._should_load_ip_adapter(ip_adapter):
self._load_ip_adapter(ip_adapter)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._should_load_upscaler(scale):
self._load_upscaler(scale)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._is_kl_vae and taesd or self._is_tiny_vae and not taesd:
self._load_vae(taesd, model)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
|