File size: 10,224 Bytes
9edebae
 
4d6f2bc
48c31e7
9edebae
48c31e7
61ad3d2
48c31e7
4d6f2bc
9edebae
05246f1
 
60849d7
9edebae
 
7e19bd9
4d6f2bc
 
 
 
 
 
 
1128e78
9edebae
05246f1
61ad3d2
4d6f2bc
 
7e19bd9
 
05246f1
9edebae
 
b7fd57e
7e19bd9
 
 
9edebae
7e19bd9
 
 
 
 
 
 
9edebae
7e19bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9edebae
7e19bd9
 
 
 
 
 
 
 
 
 
9edebae
7e19bd9
 
 
9edebae
7e19bd9
9edebae
7e19bd9
 
9edebae
 
7e19bd9
 
 
c348e53
9edebae
 
de96e86
61ad3d2
 
 
 
 
9edebae
de96e86
61ad3d2
 
7e19bd9
 
 
 
 
 
9edebae
 
7e19bd9
9edebae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e19bd9
 
9edebae
61ad3d2
9edebae
b7fd57e
 
 
 
 
 
 
 
9edebae
48c31e7
232c234
 
22a0476
b7fd57e
 
 
9edebae
 
 
 
 
 
 
 
 
 
 
 
b7fd57e
 
22a0476
9edebae
b7fd57e
48c31e7
7e19bd9
 
 
 
 
 
 
 
 
 
 
9edebae
7e19bd9
 
 
 
 
 
 
 
 
 
60849d7
c348e53
 
60849d7
61ad3d2
c348e53
 
 
 
 
60849d7
c348e53
 
 
4d6f2bc
 
 
48c31e7
 
 
4d6f2bc
 
61ad3d2
 
 
 
 
 
 
4d6f2bc
1128e78
48c31e7
9edebae
 
4d6f2bc
 
9edebae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e19bd9
9edebae
 
 
 
 
4d6f2bc
9edebae
60849d7
 
 
22a0476
60849d7
7e19bd9
9edebae
60849d7
 
 
 
 
9edebae
60849d7
7e19bd9
61ad3d2
9edebae
c348e53
60849d7
05246f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gc

import torch
from DeepCache import DeepCacheSDHelper
from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionPipeline
from diffusers.models import AutoencoderKL, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from torch._dynamo import OptimizedModule

from .config import Config
from .upscaler import RealESRGAN

__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="torch")
__import__("diffusers").logging.set_verbosity_error()


class Loader:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(Loader, cls).__new__(cls)
            cls._instance.pipe = None
            cls._instance.model = None
            cls._instance.upscaler = None
            cls._instance.ip_adapter = None
        return cls._instance

    def _should_unload_upscaler(self, scale=1):
        return self.upscaler is not None and scale == 1

    def _should_unload_ip_adapter(self, ip_adapter=""):
        return self.ip_adapter is not None and not ip_adapter

    def _should_unload_pipeline(self, kind="", model=""):
        if self.pipe is None:
            return False
        if self.model.lower() != model.lower():
            return True
        if kind == "txt2img" and not isinstance(self.pipe, StableDiffusionPipeline):
            return True  # txt2img -> img2img
        if kind == "img2img" and not isinstance(self.pipe, StableDiffusionImg2ImgPipeline):
            return True  # img2img -> txt2img
        return False

    # https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300
    def _unload_ip_adapter(self):
        print("Unloading IP Adapter...")
        if not isinstance(self.pipe, StableDiffusionImg2ImgPipeline):
            self.pipe.image_encoder = None
            self.pipe.register_to_config(image_encoder=[None, None])

        self.pipe.feature_extractor = None
        self.pipe.unet.encoder_hid_proj = None
        self.pipe.unet.config.encoder_hid_dim_type = None
        self.pipe.register_to_config(feature_extractor=[None, None])

        attn_procs = {}
        for name, value in self.pipe.unet.attn_processors.items():
            attn_processor_class = AttnProcessor2_0()  # raises if not torch 2
            attn_procs[name] = (
                attn_processor_class
                if isinstance(value, IPAdapterAttnProcessor2_0)
                else value.__class__()
            )
        self.pipe.unet.set_attn_processor(attn_procs)

    def _unload(self, kind="", model="", ip_adapter="", scale=1):
        to_unload = []

        if self._should_unload_upscaler(scale):
            to_unload.append("upscaler")

        if self._should_unload_ip_adapter(ip_adapter):
            self._unload_ip_adapter()
            to_unload.append("ip_adapter")

        if self._should_unload_pipeline(kind, model):
            to_unload.append("model")
            to_unload.append("pipe")

        for component in to_unload:
            delattr(self, component)

        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        for component in to_unload:
            setattr(self, component, None)

    def _load_ip_adapter(self, ip_adapter=""):
        if self.ip_adapter is None and ip_adapter:
            print(f"Loading IP Adapter: {ip_adapter}...")
            self.pipe.load_ip_adapter(
                "h94/IP-Adapter",
                subfolder="models",
                weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors",
            )
            # 50% works the best
            self.pipe.set_ip_adapter_scale(0.5)
            self.ip_adapter = ip_adapter

    def _load_upscaler(self, device=None, scale=1):
        if scale > 1 and self.upscaler is None:
            print(f"Loading {scale}x upscaler...")
            self.upscaler = RealESRGAN(device=device, scale=scale)
            self.upscaler.load_weights()

    def _load_pipeline(self, kind, model, device, **kwargs):
        pipeline = Config.PIPELINES[kind]
        if self.pipe is None:
            print(f"Loading {model}...")
            try:
                if model.lower() in Config.MODEL_CHECKPOINTS.keys():
                    self.pipe = pipeline.from_single_file(
                        f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
                        **kwargs,
                    ).to(device)
                else:
                    self.pipe = pipeline.from_pretrained(model, **kwargs).to(device)
                self.model = model
            except Exception as e:
                print(f"Error loading {model}: {e}")
                self.model = None
                self.pipe = None
                return

        if not isinstance(self.pipe, pipeline):
            self.pipe = pipeline.from_pipe(self.pipe).to(device)
        self.pipe.set_progress_bar_config(disable=True)

    def _load_vae(self, taesd=False, model=""):
        vae_type = type(self.pipe.vae)
        is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
        is_tiny = issubclass(vae_type, AutoencoderTiny)

        # by default all models use KL
        if is_kl and taesd:
            print("Switching to Tiny VAE...")
            self.pipe.vae = AutoencoderTiny.from_pretrained(
                # can't compile tiny VAE
                pretrained_model_name_or_path="madebyollin/taesd",
                torch_dtype=self.pipe.dtype,
            ).to(self.pipe.device)
            return

        if is_tiny and not taesd:
            print("Switching to KL VAE...")
            if model.lower() in Config.MODEL_CHECKPOINTS.keys():
                vae = AutoencoderKL.from_single_file(
                    f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
                    torch_dtype=self.pipe.dtype,
                ).to(self.pipe.device)
            else:
                vae = AutoencoderKL.from_pretrained(
                    pretrained_model_name_or_path=model,
                    torch_dtype=self.pipe.dtype,
                    subfolder="vae",
                    variant="fp16",
                ).to(self.pipe.device)
            self.pipe.vae = torch.compile(
                mode="reduce-overhead",
                fullgraph=True,
                model=vae,
            )

    def _load_deepcache(self, interval=1):
        has_deepcache = hasattr(self.pipe, "deepcache")
        if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
            return
        if has_deepcache:
            self.pipe.deepcache.disable()
        else:
            self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
        self.pipe.deepcache.set_params(cache_interval=interval)
        self.pipe.deepcache.enable()

    # https://github.com/ChenyangSi/FreeU
    def _load_freeu(self, freeu=False):
        block = self.pipe.unet.up_blocks[0]
        attrs = ["b1", "b2", "s1", "s2"]
        has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
        if has_freeu and not freeu:
            print("Disabling FreeU...")
            self.pipe.disable_freeu()
        elif not has_freeu and freeu:
            print("Enabling FreeU...")
            self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)

    def load(
        self,
        kind,
        ip_adapter,
        model,
        scheduler,
        karras,
        taesd,
        freeu,
        deepcache,
        scale,
        device,
    ):
        scheduler_kwargs = {
            "beta_schedule": "scaled_linear",
            "timestep_spacing": "leading",
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "steps_offset": 1,
        }

        if scheduler not in ["DDIM", "Euler a", "PNDM"]:
            scheduler_kwargs["use_karras_sigmas"] = karras

        # https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
        if scheduler == "DDIM":
            scheduler_kwargs["clip_sample"] = False
            scheduler_kwargs["set_alpha_to_one"] = False

        pipe_kwargs = {
            "safety_checker": None,
            "requires_safety_checker": False,
            "scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
        }

        # diffusers fp16 variant
        if model.lower() not in Config.MODEL_CHECKPOINTS.keys():
            pipe_kwargs["variant"] = "fp16"
        else:
            pipe_kwargs["variant"] = None

        # convert fp32 to bf16/fp16
        if (
            model.lower() in ["linaqruf/anything-v3-1"]
            and torch.cuda.get_device_properties(device).major >= 8
        ):
            pipe_kwargs["torch_dtype"] = torch.bfloat16
        else:
            pipe_kwargs["torch_dtype"] = torch.float16

        self._unload(kind, model, ip_adapter, scale)
        self._load_pipeline(kind, model, device, **pipe_kwargs)

        # error loading model
        if self.pipe is None:
            return self.pipe, self.upscaler

        same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
        same_karras = (
            not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
            or self.pipe.scheduler.config.use_karras_sigmas == karras
        )

        # same model, different scheduler
        if self.model.lower() == model.lower():
            if not same_scheduler:
                print(f"Switching to {scheduler}...")
            if not same_karras:
                print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
            if not same_scheduler or not same_karras:
                self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)

        self._load_upscaler(device, scale)
        self._load_ip_adapter(ip_adapter)
        self._load_vae(taesd, model)
        self._load_freeu(freeu)
        self._load_deepcache(deepcache)
        return self.pipe, self.upscaler