Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,224 Bytes
9edebae 4d6f2bc 48c31e7 9edebae 48c31e7 61ad3d2 48c31e7 4d6f2bc 9edebae 05246f1 60849d7 9edebae 7e19bd9 4d6f2bc 1128e78 9edebae 05246f1 61ad3d2 4d6f2bc 7e19bd9 05246f1 9edebae b7fd57e 7e19bd9 9edebae 7e19bd9 9edebae 7e19bd9 9edebae 7e19bd9 9edebae 7e19bd9 9edebae 7e19bd9 9edebae 7e19bd9 9edebae 7e19bd9 c348e53 9edebae de96e86 61ad3d2 9edebae de96e86 61ad3d2 7e19bd9 9edebae 7e19bd9 9edebae 7e19bd9 9edebae 61ad3d2 9edebae b7fd57e 9edebae 48c31e7 232c234 22a0476 b7fd57e 9edebae b7fd57e 22a0476 9edebae b7fd57e 48c31e7 7e19bd9 9edebae 7e19bd9 60849d7 c348e53 60849d7 61ad3d2 c348e53 60849d7 c348e53 4d6f2bc 48c31e7 4d6f2bc 61ad3d2 4d6f2bc 1128e78 48c31e7 9edebae 4d6f2bc 9edebae 7e19bd9 9edebae 4d6f2bc 9edebae 60849d7 22a0476 60849d7 7e19bd9 9edebae 60849d7 9edebae 60849d7 7e19bd9 61ad3d2 9edebae c348e53 60849d7 05246f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import gc
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionPipeline
from diffusers.models import AutoencoderKL, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from torch._dynamo import OptimizedModule
from .config import Config
from .upscaler import RealESRGAN
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="torch")
__import__("diffusers").logging.set_verbosity_error()
class Loader:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(Loader, cls).__new__(cls)
cls._instance.pipe = None
cls._instance.model = None
cls._instance.upscaler = None
cls._instance.ip_adapter = None
return cls._instance
def _should_unload_upscaler(self, scale=1):
return self.upscaler is not None and scale == 1
def _should_unload_ip_adapter(self, ip_adapter=""):
return self.ip_adapter is not None and not ip_adapter
def _should_unload_pipeline(self, kind="", model=""):
if self.pipe is None:
return False
if self.model.lower() != model.lower():
return True
if kind == "txt2img" and not isinstance(self.pipe, StableDiffusionPipeline):
return True # txt2img -> img2img
if kind == "img2img" and not isinstance(self.pipe, StableDiffusionImg2ImgPipeline):
return True # img2img -> txt2img
return False
# https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300
def _unload_ip_adapter(self):
print("Unloading IP Adapter...")
if not isinstance(self.pipe, StableDiffusionImg2ImgPipeline):
self.pipe.image_encoder = None
self.pipe.register_to_config(image_encoder=[None, None])
self.pipe.feature_extractor = None
self.pipe.unet.encoder_hid_proj = None
self.pipe.unet.config.encoder_hid_dim_type = None
self.pipe.register_to_config(feature_extractor=[None, None])
attn_procs = {}
for name, value in self.pipe.unet.attn_processors.items():
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
attn_procs[name] = (
attn_processor_class
if isinstance(value, IPAdapterAttnProcessor2_0)
else value.__class__()
)
self.pipe.unet.set_attn_processor(attn_procs)
def _unload(self, kind="", model="", ip_adapter="", scale=1):
to_unload = []
if self._should_unload_upscaler(scale):
to_unload.append("upscaler")
if self._should_unload_ip_adapter(ip_adapter):
self._unload_ip_adapter()
to_unload.append("ip_adapter")
if self._should_unload_pipeline(kind, model):
to_unload.append("model")
to_unload.append("pipe")
for component in to_unload:
delattr(self, component)
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
for component in to_unload:
setattr(self, component, None)
def _load_ip_adapter(self, ip_adapter=""):
if self.ip_adapter is None and ip_adapter:
print(f"Loading IP Adapter: {ip_adapter}...")
self.pipe.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors",
)
# 50% works the best
self.pipe.set_ip_adapter_scale(0.5)
self.ip_adapter = ip_adapter
def _load_upscaler(self, device=None, scale=1):
if scale > 1 and self.upscaler is None:
print(f"Loading {scale}x upscaler...")
self.upscaler = RealESRGAN(device=device, scale=scale)
self.upscaler.load_weights()
def _load_pipeline(self, kind, model, device, **kwargs):
pipeline = Config.PIPELINES[kind]
if self.pipe is None:
print(f"Loading {model}...")
try:
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe = pipeline.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
**kwargs,
).to(device)
else:
self.pipe = pipeline.from_pretrained(model, **kwargs).to(device)
self.model = model
except Exception as e:
print(f"Error loading {model}: {e}")
self.model = None
self.pipe = None
return
if not isinstance(self.pipe, pipeline):
self.pipe = pipeline.from_pipe(self.pipe).to(device)
self.pipe.set_progress_bar_config(disable=True)
def _load_vae(self, taesd=False, model=""):
vae_type = type(self.pipe.vae)
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
is_tiny = issubclass(vae_type, AutoencoderTiny)
# by default all models use KL
if is_kl and taesd:
print("Switching to Tiny VAE...")
self.pipe.vae = AutoencoderTiny.from_pretrained(
# can't compile tiny VAE
pretrained_model_name_or_path="madebyollin/taesd",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
return
if is_tiny and not taesd:
print("Switching to KL VAE...")
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
vae = AutoencoderKL.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
else:
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=model,
torch_dtype=self.pipe.dtype,
subfolder="vae",
variant="fp16",
).to(self.pipe.device)
self.pipe.vae = torch.compile(
mode="reduce-overhead",
fullgraph=True,
model=vae,
)
def _load_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
return
if has_deepcache:
self.pipe.deepcache.disable()
else:
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
# https://github.com/ChenyangSi/FreeU
def _load_freeu(self, freeu=False):
block = self.pipe.unet.up_blocks[0]
attrs = ["b1", "b2", "s1", "s2"]
has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
if has_freeu and not freeu:
print("Disabling FreeU...")
self.pipe.disable_freeu()
elif not has_freeu and freeu:
print("Enabling FreeU...")
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
def load(
self,
kind,
ip_adapter,
model,
scheduler,
karras,
taesd,
freeu,
deepcache,
scale,
device,
):
scheduler_kwargs = {
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"beta_start": 0.00085,
"beta_end": 0.012,
"steps_offset": 1,
}
if scheduler not in ["DDIM", "Euler a", "PNDM"]:
scheduler_kwargs["use_karras_sigmas"] = karras
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
if scheduler == "DDIM":
scheduler_kwargs["clip_sample"] = False
scheduler_kwargs["set_alpha_to_one"] = False
pipe_kwargs = {
"safety_checker": None,
"requires_safety_checker": False,
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
}
# diffusers fp16 variant
if model.lower() not in Config.MODEL_CHECKPOINTS.keys():
pipe_kwargs["variant"] = "fp16"
else:
pipe_kwargs["variant"] = None
# convert fp32 to bf16/fp16
if (
model.lower() in ["linaqruf/anything-v3-1"]
and torch.cuda.get_device_properties(device).major >= 8
):
pipe_kwargs["torch_dtype"] = torch.bfloat16
else:
pipe_kwargs["torch_dtype"] = torch.float16
self._unload(kind, model, ip_adapter, scale)
self._load_pipeline(kind, model, device, **pipe_kwargs)
# error loading model
if self.pipe is None:
return self.pipe, self.upscaler
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
# same model, different scheduler
if self.model.lower() == model.lower():
if not same_scheduler:
print(f"Switching to {scheduler}...")
if not same_karras:
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
if not same_scheduler or not same_karras:
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
self._load_upscaler(device, scale)
self._load_ip_adapter(ip_adapter)
self._load_vae(taesd, model)
self._load_freeu(freeu)
self._load_deepcache(deepcache)
return self.pipe, self.upscaler
|