Files changed (6) hide show
  1. app.py +37 -29
  2. cli.py +2 -0
  3. lib/__init__.py +1 -0
  4. lib/inference.py +9 -4
  5. lib/loader.py +17 -4
  6. lib/upscaler.py +317 -0
app.py CHANGED
@@ -38,7 +38,7 @@ def handle_generate(*args):
38
  if prompt is None or prompt.strip() == "":
39
  raise gr.Error("You must enter a prompt")
40
  try:
41
- images = generate(*args, log=gr.Info, Error=gr.Error)
42
  except RuntimeError:
43
  raise gr.Error("RuntimeError: Please try again")
44
  return images
@@ -90,32 +90,63 @@ with gr.Blocks(
90
  )
91
 
92
  model = gr.Dropdown(
93
- value=cfg.MODEL,
94
  filterable=False,
 
95
  label="Model",
96
- choices=cfg.MODELS,
97
  )
98
 
99
  with gr.Row():
100
  style = gr.Dropdown(
101
  value=cfg.STYLE,
102
  label="Style",
 
103
  choices=[("None", None)]
104
  + [(style["name"], style["id"]) for style in styles],
105
  )
106
  scheduler = gr.Dropdown(
 
107
  value=cfg.SCHEDULER,
108
  elem_id="scheduler",
109
  label="Scheduler",
110
  filterable=False,
 
 
 
 
 
 
111
  min_width=200,
112
- choices=cfg.SCHEDULERS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  )
114
 
115
  with gr.Row():
116
  guidance_scale = gr.Slider(
117
  value=cfg.GUIDANCE_SCALE,
118
  label="Guidance Scale",
 
119
  minimum=1.0,
120
  maximum=15.0,
121
  step=0.1,
@@ -134,40 +165,16 @@ with gr.Blocks(
134
  maximum=(2**64) - 1,
135
  )
136
 
137
- with gr.Row():
138
- width = gr.Slider(
139
- value=cfg.WIDTH,
140
- label="Width",
141
- minimum=320,
142
- maximum=768,
143
- step=32,
144
- )
145
- height = gr.Slider(
146
- value=cfg.HEIGHT,
147
- label="Height",
148
- minimum=320,
149
- maximum=768,
150
- step=32,
151
- )
152
- num_images = gr.Dropdown(
153
- choices=list(range(1, 5)),
154
- value=cfg.NUM_IMAGES,
155
- filterable=False,
156
- label="Images",
157
- )
158
-
159
  with gr.Row():
160
  use_karras = gr.Checkbox(
161
  elem_classes=["checkbox"],
162
  label="Karras σ",
163
  value=True,
164
- scale=1,
165
  )
166
  increment_seed = gr.Checkbox(
167
  elem_classes=["checkbox"],
168
  label="Autoincrement",
169
  value=True,
170
- scale=1,
171
  )
172
 
173
  with gr.TabItem("🛠️ Advanced"):
@@ -226,7 +233,7 @@ with gr.Blocks(
226
  columns=2,
227
  )
228
  prompt = gr.Textbox(
229
- placeholder="corgi, at the beach, cute, 8k",
230
  show_label=False,
231
  label="Prompt",
232
  value=None,
@@ -294,6 +301,7 @@ with gr.Blocks(
294
  increment_seed,
295
  deepcache_interval,
296
  tome_ratio,
 
297
  ],
298
  )
299
 
 
38
  if prompt is None or prompt.strip() == "":
39
  raise gr.Error("You must enter a prompt")
40
  try:
41
+ images = generate(*args, Info=gr.Info, Error=gr.Error)
42
  except RuntimeError:
43
  raise gr.Error("RuntimeError: Please try again")
44
  return images
 
90
  )
91
 
92
  model = gr.Dropdown(
93
+ choices=cfg.MODELS,
94
  filterable=False,
95
+ value=cfg.MODEL,
96
  label="Model",
 
97
  )
98
 
99
  with gr.Row():
100
  style = gr.Dropdown(
101
  value=cfg.STYLE,
102
  label="Style",
103
+ min_width=200,
104
  choices=[("None", None)]
105
  + [(style["name"], style["id"]) for style in styles],
106
  )
107
  scheduler = gr.Dropdown(
108
+ choices=cfg.SCHEDULERS,
109
  value=cfg.SCHEDULER,
110
  elem_id="scheduler",
111
  label="Scheduler",
112
  filterable=False,
113
+ )
114
+
115
+ with gr.Row():
116
+ width = gr.Slider(
117
+ value=cfg.WIDTH,
118
+ label="Width",
119
  min_width=200,
120
+ minimum=320,
121
+ maximum=768,
122
+ step=32,
123
+ )
124
+ height = gr.Slider(
125
+ value=cfg.HEIGHT,
126
+ label="Height",
127
+ minimum=320,
128
+ maximum=768,
129
+ step=32,
130
+ )
131
+ num_images = gr.Dropdown(
132
+ choices=list(range(1, 5)),
133
+ value=cfg.NUM_IMAGES,
134
+ filterable=False,
135
+ label="Images",
136
+ )
137
+ scale = gr.Dropdown(
138
+ choices=[("1x", 1), ("2x", 2), ("4x", 4)],
139
+ filterable=False,
140
+ label="Scale",
141
+ min_width=200,
142
+ value=1,
143
  )
144
 
145
  with gr.Row():
146
  guidance_scale = gr.Slider(
147
  value=cfg.GUIDANCE_SCALE,
148
  label="Guidance Scale",
149
+ min_width=200,
150
  minimum=1.0,
151
  maximum=15.0,
152
  step=0.1,
 
165
  maximum=(2**64) - 1,
166
  )
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  with gr.Row():
169
  use_karras = gr.Checkbox(
170
  elem_classes=["checkbox"],
171
  label="Karras σ",
172
  value=True,
 
173
  )
174
  increment_seed = gr.Checkbox(
175
  elem_classes=["checkbox"],
176
  label="Autoincrement",
177
  value=True,
 
178
  )
179
 
180
  with gr.TabItem("🛠️ Advanced"):
 
233
  columns=2,
234
  )
235
  prompt = gr.Textbox(
236
+ placeholder="corgi, beach, 8k",
237
  show_label=False,
238
  label="Prompt",
239
  value=None,
 
301
  increment_seed,
302
  deepcache_interval,
303
  tome_ratio,
304
+ scale,
305
  ],
306
  )
307
 
cli.py CHANGED
@@ -24,6 +24,7 @@ def main():
24
  parser.add_argument("-h", "--height", type=int, metavar="INT", default=cfg.HEIGHT)
25
  parser.add_argument("-m", "--model", type=str, metavar="STR", default=cfg.MODEL)
26
  parser.add_argument("-d", "--deepcache", type=int, metavar="INT", default=cfg.DEEPCACHE_INTERVAL)
 
27
  parser.add_argument("--style", type=str, metavar="STR", default=cfg.STYLE)
28
  parser.add_argument("--scheduler", type=str, metavar="STR", default=cfg.SCHEDULER)
29
  parser.add_argument("--guidance", type=float, metavar="FLOAT", default=cfg.GUIDANCE_SCALE)
@@ -56,6 +57,7 @@ def main():
56
  args.no_increment,
57
  args.deepcache,
58
  args.tome,
 
59
  )
60
  save_images(images, args.filename)
61
 
 
24
  parser.add_argument("-h", "--height", type=int, metavar="INT", default=cfg.HEIGHT)
25
  parser.add_argument("-m", "--model", type=str, metavar="STR", default=cfg.MODEL)
26
  parser.add_argument("-d", "--deepcache", type=int, metavar="INT", default=cfg.DEEPCACHE_INTERVAL)
27
+ parser.add_argument("--scale", type=int, metavar="INT", choices=[1, 2, 4], default=1)
28
  parser.add_argument("--style", type=str, metavar="STR", default=cfg.STYLE)
29
  parser.add_argument("--scheduler", type=str, metavar="STR", default=cfg.SCHEDULER)
30
  parser.add_argument("--guidance", type=float, metavar="FLOAT", default=cfg.GUIDANCE_SCALE)
 
57
  args.no_increment,
58
  args.deepcache,
59
  args.tome,
60
+ args.scale,
61
  )
62
  save_images(images, args.filename)
63
 
lib/__init__.py CHANGED
@@ -1,2 +1,3 @@
1
  from .inference import generate
2
  from .loader import Loader
 
 
1
  from .inference import generate
2
  from .loader import Loader
3
+ from .upscaler import RealESRGAN
lib/inference.py CHANGED
@@ -91,7 +91,8 @@ def generate(
91
  increment_seed=True,
92
  deepcache_interval=1,
93
  tome_ratio=0,
94
- log: Callable[[str], None] = None,
 
95
  Error=Exception,
96
  ):
97
  if not torch.cuda.is_available():
@@ -118,12 +119,13 @@ def generate(
118
  with torch.inference_mode():
119
  start = time.perf_counter()
120
  loader = Loader()
121
- pipe = loader.load(
122
  model,
123
  scheduler,
124
  karras,
125
  taesd,
126
  deepcache_interval,
 
127
  DTYPE,
128
  DEVICE,
129
  )
@@ -167,6 +169,7 @@ def generate(
167
  with token_merging(pipe, tome_ratio=tome_ratio):
168
  try:
169
  image = pipe(
 
170
  num_inference_steps=inference_steps,
171
  negative_prompt_embeds=neg_embeds,
172
  guidance_scale=guidance_scale,
@@ -175,6 +178,8 @@ def generate(
175
  height=height,
176
  width=width,
177
  ).images[0]
 
 
178
  images.append((image, str(current_seed)))
179
  finally:
180
  if not ZERO_GPU:
@@ -188,6 +193,6 @@ def generate(
188
  loader.pipe = None
189
 
190
  diff = time.perf_counter() - start
191
- if log:
192
- log(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
193
  return images
 
91
  increment_seed=True,
92
  deepcache_interval=1,
93
  tome_ratio=0,
94
+ scale=1,
95
+ Info: Callable[[str], None] = None,
96
  Error=Exception,
97
  ):
98
  if not torch.cuda.is_available():
 
119
  with torch.inference_mode():
120
  start = time.perf_counter()
121
  loader = Loader()
122
+ pipe, upscaler = loader.load(
123
  model,
124
  scheduler,
125
  karras,
126
  taesd,
127
  deepcache_interval,
128
+ scale,
129
  DTYPE,
130
  DEVICE,
131
  )
 
169
  with token_merging(pipe, tome_ratio=tome_ratio):
170
  try:
171
  image = pipe(
172
+ output_type="np" if scale > 1 else "pil",
173
  num_inference_steps=inference_steps,
174
  negative_prompt_embeds=neg_embeds,
175
  guidance_scale=guidance_scale,
 
178
  height=height,
179
  width=width,
180
  ).images[0]
181
+ if scale > 1:
182
+ image = upscaler.predict(image)
183
  images.append((image, str(current_seed)))
184
  finally:
185
  if not ZERO_GPU:
 
193
  loader.pipe = None
194
 
195
  diff = time.perf_counter() - start
196
+ if Info:
197
+ Info(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
198
  return images
lib/loader.py CHANGED
@@ -15,6 +15,8 @@ from diffusers import (
15
  from diffusers.models import AutoencoderKL, AutoencoderTiny
16
  from torch._dynamo import OptimizedModule
17
 
 
 
18
  ZERO_GPU = (
19
  os.environ.get("SPACES_ZERO_GPU", "").lower() == "true"
20
  or os.environ.get("SPACES_ZERO_GPU", "") == "1"
@@ -38,8 +40,17 @@ class Loader:
38
  if cls._instance is None:
39
  cls._instance = super(Loader, cls).__new__(cls)
40
  cls._instance.pipe = None
 
41
  return cls._instance
42
 
 
 
 
 
 
 
 
 
43
  def _load_deepcache(self, interval=1):
44
  has_deepcache = hasattr(self.pipe, "deepcache")
45
 
@@ -82,7 +93,7 @@ class Loader:
82
  model=model,
83
  )
84
 
85
- def load(self, model, scheduler, karras, taesd, deepcache_interval, dtype, device):
86
  model_lower = model.lower()
87
 
88
  schedulers = {
@@ -145,7 +156,9 @@ class Loader:
145
  self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
146
  self._load_vae(model_lower, taesd, variant)
147
  self._load_deepcache(interval=deepcache_interval)
148
- return self.pipe
 
 
149
  else:
150
  print(f"Unloading {model_name.lower()}...")
151
  self.pipe = None
@@ -161,6 +174,6 @@ class Loader:
161
  )
162
  self._load_vae(model_lower, taesd, variant)
163
  self._load_deepcache(interval=deepcache_interval)
164
-
165
  torch.cuda.empty_cache()
166
- return self.pipe
 
15
  from diffusers.models import AutoencoderKL, AutoencoderTiny
16
  from torch._dynamo import OptimizedModule
17
 
18
+ from .upscaler import RealESRGAN
19
+
20
  ZERO_GPU = (
21
  os.environ.get("SPACES_ZERO_GPU", "").lower() == "true"
22
  or os.environ.get("SPACES_ZERO_GPU", "") == "1"
 
40
  if cls._instance is None:
41
  cls._instance = super(Loader, cls).__new__(cls)
42
  cls._instance.pipe = None
43
+ cls._instance.upscaler = None
44
  return cls._instance
45
 
46
+ def _load_upscaler(self, device=None, scale=4):
47
+ same_scale = self.upscaler is not None and self.upscaler.scale == scale
48
+ if scale == 1:
49
+ self.upscaler = None
50
+ if scale > 1 and not same_scale:
51
+ self.upscaler = RealESRGAN(device=device, scale=scale)
52
+ self.upscaler.load_weights()
53
+
54
  def _load_deepcache(self, interval=1):
55
  has_deepcache = hasattr(self.pipe, "deepcache")
56
 
 
93
  model=model,
94
  )
95
 
96
+ def load(self, model, scheduler, karras, taesd, deepcache_interval, scale, dtype, device):
97
  model_lower = model.lower()
98
 
99
  schedulers = {
 
156
  self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
157
  self._load_vae(model_lower, taesd, variant)
158
  self._load_deepcache(interval=deepcache_interval)
159
+ self._load_upscaler(device=device, scale=scale)
160
+ torch.cuda.empty_cache()
161
+ return self.pipe, self.upscaler
162
  else:
163
  print(f"Unloading {model_name.lower()}...")
164
  self.pipe = None
 
174
  )
175
  self._load_vae(model_lower, taesd, variant)
176
  self._load_deepcache(interval=deepcache_interval)
177
+ self._load_upscaler(device=device, scale=scale)
178
  torch.cuda.empty_cache()
179
+ return self.pipe, self.upscaler
lib/upscaler.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BSD 3-Clause License
2
+ #
3
+ # Copyright (c) 2021, Sberbank AI
4
+ # All rights reserved.
5
+ #
6
+ # Redistribution and use in source and binary forms, with or without
7
+ # modification, are permitted provided that the following conditions are met:
8
+ #
9
+ # 1. Redistributions of source code must retain the above copyright notice, this
10
+ # list of conditions and the following disclaimer.
11
+ #
12
+ # 2. Redistributions in binary form must reproduce the above copyright notice,
13
+ # this list of conditions and the following disclaimer in the documentation
14
+ # and/or other materials provided with the distribution.
15
+ #
16
+ # 3. Neither the name of the copyright holder nor the names of its
17
+ # contributors may be used to endorse or promote products derived from
18
+ # this software without specific prior written permission.
19
+ #
20
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
+ import einops
31
+ import numpy as np
32
+ import torch
33
+ from huggingface_hub import hf_hub_download
34
+ from PIL import Image
35
+ from torch import nn as nn
36
+ from torch.nn import functional as F
37
+ from torch.nn import init as init
38
+ from torch.nn.modules.batchnorm import _BatchNorm
39
+
40
+ # https://huggingface.co/ai-forever/Real-ESRGAN
41
+ HF_MODELS = {
42
+ 2: {
43
+ "repo_id": "ai-forever/Real-ESRGAN",
44
+ "filename": "RealESRGAN_x2.pth",
45
+ },
46
+ 4: {
47
+ "repo_id": "ai-forever/Real-ESRGAN",
48
+ "filename": "RealESRGAN_x4.pth",
49
+ },
50
+ # 8: {
51
+ # "repo_id": "ai-forever/Real-ESRGAN",
52
+ # "filename": "RealESRGAN_x8.pth",
53
+ # },
54
+ }
55
+
56
+
57
+ def pad_reflect(image, pad_size):
58
+ # fmt: off
59
+ image_size = image.shape
60
+ height, width = image_size[:2]
61
+ new_image = np.zeros([height + pad_size * 2, width + pad_size * 2, image_size[2]]).astype(np.uint8)
62
+ new_image[pad_size:-pad_size, pad_size:-pad_size, :] = image
63
+ new_image[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) # top
64
+ new_image[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) # bottom
65
+ new_image[:, 0:pad_size, :] = np.flip(new_image[:, pad_size : pad_size * 2, :], axis=1) # left
66
+ new_image[:, -pad_size:, :] = np.flip(new_image[:, -pad_size * 2 : -pad_size, :], axis=1) # right
67
+ return new_image
68
+ # fmt: on
69
+
70
+
71
+ def unpad_image(image, pad_size):
72
+ return image[pad_size:-pad_size, pad_size:-pad_size, :]
73
+
74
+
75
+ def pad_patch(image_patch, padding_size, channel_last=True):
76
+ if channel_last:
77
+ return np.pad(
78
+ image_patch,
79
+ ((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
80
+ "edge",
81
+ )
82
+ else:
83
+ return np.pad(
84
+ image_patch,
85
+ ((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
86
+ "edge",
87
+ )
88
+
89
+
90
+ def unpad_patches(image_patches, padding_size):
91
+ return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]
92
+
93
+
94
+ def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
95
+ xmax, ymax, _ = image_array.shape
96
+ x_remainder = xmax % patch_size
97
+ y_remainder = ymax % patch_size
98
+
99
+ # modulo here is to avoid extending of patch_size instead of 0
100
+ x_extend = (patch_size - x_remainder) % patch_size
101
+ y_extend = (patch_size - y_remainder) % patch_size
102
+
103
+ # make sure the image is divisible into regular patches
104
+ extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), "edge")
105
+
106
+ # add padding around the image to simplify computations
107
+ padded_image = pad_patch(extended_image, padding_size, channel_last=True)
108
+
109
+ patches = []
110
+ xmax, ymax, _ = padded_image.shape
111
+ x_lefts = range(padding_size, xmax - padding_size, patch_size)
112
+ y_tops = range(padding_size, ymax - padding_size, patch_size)
113
+
114
+ for x in x_lefts:
115
+ for y in y_tops:
116
+ x_left = x - padding_size
117
+ y_top = y - padding_size
118
+ x_right = x + patch_size + padding_size
119
+ y_bottom = y + patch_size + padding_size
120
+ patch = padded_image[x_left:x_right, y_top:y_bottom, :]
121
+ patches.append(patch)
122
+ return np.array(patches), padded_image.shape
123
+
124
+
125
+ def stitch_together(patches, padded_image_shape, target_shape, padding_size=4):
126
+ xmax, ymax, _ = padded_image_shape
127
+ patches = unpad_patches(patches, padding_size)
128
+ patch_size = patches.shape[1]
129
+ n_patches_per_row = ymax // patch_size
130
+ complete_image = np.zeros((xmax, ymax, 3))
131
+
132
+ row = -1
133
+ col = 0
134
+ for i in range(len(patches)):
135
+ if i % n_patches_per_row == 0:
136
+ row += 1
137
+ col = 0
138
+ complete_image[
139
+ row * patch_size : (row + 1) * patch_size, col * patch_size : (col + 1) * patch_size, :
140
+ ] = patches[i]
141
+ col += 1
142
+ return complete_image[0 : target_shape[0], 0 : target_shape[1], :]
143
+
144
+
145
+ @torch.no_grad()
146
+ def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
147
+ if not isinstance(module_list, list):
148
+ module_list = [module_list]
149
+ for module in module_list:
150
+ for m in module.modules():
151
+ if isinstance(m, nn.Conv2d):
152
+ init.kaiming_normal_(m.weight, **kwargs)
153
+ m.weight.data *= scale
154
+ if m.bias is not None:
155
+ m.bias.data.fill_(bias_fill)
156
+ elif isinstance(m, nn.Linear):
157
+ init.kaiming_normal_(m.weight, **kwargs)
158
+ m.weight.data *= scale
159
+ if m.bias is not None:
160
+ m.bias.data.fill_(bias_fill)
161
+ elif isinstance(m, _BatchNorm):
162
+ init.constant_(m.weight, 1)
163
+ if m.bias is not None:
164
+ m.bias.data.fill_(bias_fill)
165
+
166
+
167
+ def make_layer(basic_block, num_basic_block, **kwarg):
168
+ layers = []
169
+ for _ in range(num_basic_block):
170
+ layers.append(basic_block(**kwarg))
171
+ return nn.Sequential(*layers)
172
+
173
+
174
+ def pixel_unshuffle(x, scale):
175
+ _, _, h, w = x.shape
176
+ assert h % scale == 0 and w % scale == 0, "Height and width must be divisible by scale"
177
+ return einops.rearrange(
178
+ x,
179
+ "b c (h s1) (w s2) -> b (c s1 s2) h w",
180
+ s1=scale,
181
+ s2=scale,
182
+ )
183
+
184
+
185
+ class ResidualDenseBlock(nn.Module):
186
+ def __init__(self, num_feat=64, num_grow_ch=32):
187
+ super(ResidualDenseBlock, self).__init__()
188
+ self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
189
+ self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
190
+ self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
191
+ self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
192
+ self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
193
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
194
+ default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
195
+
196
+ def forward(self, x):
197
+ x1 = self.lrelu(self.conv1(x))
198
+ x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
199
+ x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
200
+ x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
201
+ x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
202
+ return x5 * 0.2 + x # scale the residual by a factor of 0.2
203
+
204
+
205
+ class RRDB(nn.Module):
206
+ def __init__(self, num_feat, num_grow_ch=32):
207
+ super(RRDB, self).__init__()
208
+ self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
209
+ self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
210
+ self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
211
+
212
+ def forward(self, x):
213
+ out = self.rdb1(x)
214
+ out = self.rdb2(out)
215
+ out = self.rdb3(out)
216
+ return out * 0.2 + x # scale the residual by a factor of 0.2
217
+
218
+
219
+ class RRDBNet(nn.Module):
220
+ def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
221
+ super(RRDBNet, self).__init__()
222
+ self.scale = scale
223
+ if scale == 2:
224
+ num_in_ch = num_in_ch * 4
225
+ elif scale == 1:
226
+ num_in_ch = num_in_ch * 16
227
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
228
+ self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
229
+ self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
230
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
231
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
232
+ if scale == 8:
233
+ self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
234
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
235
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
236
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
237
+
238
+ def forward(self, x):
239
+ if self.scale == 2:
240
+ feat = pixel_unshuffle(x, scale=2)
241
+ elif self.scale == 1:
242
+ feat = pixel_unshuffle(x, scale=4)
243
+ else:
244
+ feat = x
245
+ feat = self.conv_first(feat)
246
+ body_feat = self.conv_body(self.body(feat))
247
+ feat = feat + body_feat
248
+ feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest")))
249
+ feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest")))
250
+ if self.scale == 8:
251
+ feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode="nearest")))
252
+ out = self.conv_last(self.lrelu(self.conv_hr(feat)))
253
+ return out
254
+
255
+
256
+ class RealESRGAN:
257
+ def __init__(self, device, scale=4):
258
+ self.device = device
259
+ self.scale = scale
260
+ self.model = RRDBNet(
261
+ num_in_ch=3,
262
+ num_out_ch=3,
263
+ num_feat=64,
264
+ num_block=23,
265
+ num_grow_ch=32,
266
+ scale=scale,
267
+ )
268
+
269
+ def load_weights(self):
270
+ assert self.scale in [2, 4], "You can download models only with scales: 2, 4"
271
+ config = HF_MODELS[self.scale]
272
+ cache_path = hf_hub_download(config["repo_id"], filename=config["filename"])
273
+ loadnet = torch.load(cache_path)
274
+ if "params" in loadnet:
275
+ self.model.load_state_dict(loadnet["params"], strict=True)
276
+ elif "params_ema" in loadnet:
277
+ self.model.load_state_dict(loadnet["params_ema"], strict=True)
278
+ else:
279
+ self.model.load_state_dict(loadnet, strict=True)
280
+ self.model.eval().to(device=self.device)
281
+
282
+ @torch.cuda.amp.autocast()
283
+ def predict(self, lr_image, batch_size=4, patches_size=192, padding=24, pad_size=15):
284
+ scale = self.scale
285
+ if not isinstance(lr_image, np.ndarray):
286
+ lr_image = np.array(lr_image)
287
+ if lr_image.min() < 0.0:
288
+ lr_image = (lr_image + 1.0) / 2.0
289
+ if lr_image.max() <= 1.0:
290
+ lr_image = lr_image * 255.0
291
+ lr_image = pad_reflect(lr_image, pad_size)
292
+ patches, p_shape = split_image_into_overlapping_patches(
293
+ lr_image,
294
+ patch_size=patches_size,
295
+ padding_size=padding,
296
+ )
297
+ patches = torch.Tensor(patches / 255.0)
298
+ image = einops.rearrange(patches, "b h w c -> b c h w").to(device=self.device)
299
+
300
+ with torch.inference_mode():
301
+ res = self.model(image[0:batch_size])
302
+ for i in range(batch_size, image.shape[0], batch_size):
303
+ res = torch.cat((res, self.model(image[i : i + batch_size])), 0)
304
+
305
+ sr_image = einops.rearrange(res.clamp(0, 1), "b c h w -> b h w c").cpu().numpy()
306
+ padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
307
+ scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
308
+ sr_image = stitch_together(
309
+ sr_image,
310
+ padded_image_shape=padded_size_scaled,
311
+ target_shape=scaled_image_shape,
312
+ padding_size=padding * scale,
313
+ )
314
+ sr_image = (sr_image * 255).astype(np.uint8)
315
+ sr_image = unpad_image(sr_image, pad_size * scale)
316
+ sr_image = Image.fromarray(sr_image)
317
+ return sr_image