Spaces:
Sleeping
Sleeping
File size: 11,314 Bytes
f4c3c2b ff50bb1 f4c3c2b ff50bb1 b5e8b97 f4c3c2b ff50bb1 f4c3c2b ff50bb1 f4c3c2b ff50bb1 f4c3c2b ff50bb1 f4c3c2b ff50bb1 f4c3c2b ff50bb1 f4c3c2b ff50bb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate images using pretrained network pickle."""
import math
import legacy
import clip
import dnnlib
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose, Resize, CenterCrop
from PIL import Image
from torch_utils import misc
from torch_utils.ops import upfirdn2d
import id_loss
def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs):
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
else:
misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2])
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if self.in_channels == 0:
x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = y.add_(x)
else:
x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs)
# ToRGB.
if img is not None:
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
img = upfirdn2d.upsample2d(img, self.resample_filter)
if self.is_last or self.architecture == 'skip':
y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = img.add_(y) if img is not None else y
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
def find_direction(
G,
text_prompt: str,
truncation_psi: float = 0.7,
noise_mode: str = "const",
resolution: int = 256,
identity_power: float = 0.5,
):
seeds=np.random.randint(0, 1000, 128)
batch_size=1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Labels
class_idx=None
label = torch.zeros([1, G.c_dim], device=device).requires_grad_()
if G.c_dim != 0:
label[:, class_idx] = 1
model, preprocess = clip.load("ViT-B/32", device=device)
text = clip.tokenize([text_prompt]).to(device)
text_features = model.encode_text(text)
# Generate images
for i in G.parameters():
i.requires_grad = True
mean = torch.as_tensor((0.48145466, 0.4578275, 0.40821073), dtype=torch.float, device=device)
std = torch.as_tensor((0.26862954, 0.26130258, 0.27577711), dtype=torch.float, device=device)
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
transf = Compose([Resize(224, interpolation=Image.BICUBIC), CenterCrop(224)])
styles_array = []
for seed_idx, seed in enumerate(seeds):
if seed == seeds[-1]:
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
ws = G.mapping(z, label, truncation_psi=truncation_psi)
block_ws = []
with torch.autograd.profiler.record_function('split_ws'):
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim])
ws = ws.to(torch.float32)
w_idx = 0
for res in G.synthesis.block_resolutions:
block = getattr(G.synthesis, f'b{res}')
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx += block.num_conv
styles = torch.zeros(1, 26, 512, device=device)
styles_idx = 0
temp_shapes = []
for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws):
block = getattr(G.synthesis, f'b{res}')
if res == 4:
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
styles[0, :1, :] = block.conv1.affine(cur_ws[0, :1, :])
styles[0, 1:2, :] = block.torgb.affine(cur_ws[0, 1:2, :])
if seed_idx == (len(seeds) - 1):
block.conv1.affine = torch.nn.Identity()
block.torgb.affine = torch.nn.Identity()
styles_idx += 2
else:
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:])
styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:])
styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:])
if seed_idx == (len(seeds) - 1):
block.conv0.affine = torch.nn.Identity()
block.conv1.affine = torch.nn.Identity()
block.torgb.affine = torch.nn.Identity()
styles_idx += 3
temp_shapes.append(temp_shape)
styles = styles.detach()
styles_array.append(styles)
resolution_dict = {256: 6, 512: 7, 1024: 8}
id_coeff = identity_power
styles_direction = torch.zeros(1, 26, 512, device=device)
styles_direction_grad_el2 = torch.zeros(1, 26, 512, device=device)
styles_direction.requires_grad_()
global id_loss
id_loss = id_loss.IDLoss("a").to(device).eval()
temp_photos = []
grads = []
for i in range(math.ceil(len(seeds) / batch_size)):
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device)
seed = seeds[i]
styles_idx = 0
x2 = img2 = None
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k > resolution_dict[resolution]:
continue
if res == 4:
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 2
else:
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 3
img2_cpu = img2.detach().cpu().numpy()
temp_photos.append(img2_cpu)
if i > 3:
continue
styles2 = styles + styles_direction
styles_idx = 0
x = img = None
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k > resolution_dict[resolution]:
continue
if res == 4:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 2
else:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 3
identity_loss, _ = id_loss(img, img2)
identity_loss *= id_coeff
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std)
image_features = model.encode_image(img)
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0))
(identity_loss + cos_sim.sum()).backward(retain_graph=True)
styles_direction.grad[:, list(range(26)), :] = 0
with torch.no_grad():
styles_direction *= 0
for i in range(math.ceil(len(seeds) / batch_size)):
seed = seeds[i]
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device)
img2 = torch.tensor(temp_photos[i]).to(device)
styles2 = styles + styles_direction
styles_idx = 0
x = img = None
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k > resolution_dict[resolution]:
continue
if res == 4:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 2
else:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 3
identity_loss, _ = id_loss(img, img2)
identity_loss *= id_coeff
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std)
image_features = model.encode_image(img)
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0))
(identity_loss + cos_sim.sum()).backward(retain_graph=True)
styles_direction.grad[:, [0, 1, 4, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], :] = 0
if i % 2 == 1:
styles_direction.data = (styles_direction - styles_direction.grad * 5)
grads.append(styles_direction.grad.clone())
styles_direction.grad.data.zero_()
if i > 3:
styles_direction_grad_el2[grads[-2] * grads[-1] < 0] += 1
styles_direction = styles_direction.detach()
styles_direction[styles_direction_grad_el2 > (len(seeds) / batch_size) / 4] = 0
return styles_direction.cpu().numpy()
|