Spaces:
Sleeping
Sleeping
update w_to_s converter
Browse files- w_s_converter.py +24 -74
w_s_converter.py
CHANGED
@@ -10,24 +10,10 @@
|
|
10 |
|
11 |
import os
|
12 |
import re
|
13 |
-
import
|
14 |
-
|
15 |
-
import time
|
16 |
-
import click
|
17 |
-
import legacy
|
18 |
-
from typing import List, Optional
|
19 |
-
|
20 |
-
import cv2
|
21 |
-
import clip
|
22 |
-
import dnnlib
|
23 |
import numpy as np
|
24 |
-
import torchvision
|
25 |
-
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
26 |
import torch
|
27 |
-
from torch import linalg as LA
|
28 |
-
import torch.nn.functional as F
|
29 |
-
from PIL import Image
|
30 |
-
import matplotlib.pyplot as plt
|
31 |
|
32 |
from torch_utils import misc
|
33 |
from torch_utils import persistence
|
@@ -86,56 +72,27 @@ def unravel_index(index, shape):
|
|
86 |
out.append(index % dim)
|
87 |
index = index // dim
|
88 |
return tuple(reversed(out))
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
|
93 |
-
|
94 |
-
range_re = re.compile(r'^(\d+)-(\d+)$')
|
95 |
-
m = range_re.match(s)
|
96 |
-
if m:
|
97 |
-
return list(range(int(m.group(1)), int(m.group(2))+1))
|
98 |
-
vals = s.split(',')
|
99 |
-
return [int(x) for x in vals]
|
100 |
-
|
101 |
-
|
102 |
-
@click.command()
|
103 |
-
@click.pass_context
|
104 |
-
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
|
105 |
-
@click.option('--seeds', type=num_range, help='List of random seeds')
|
106 |
-
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
|
107 |
-
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
|
108 |
-
@click.option('--projected-w', help='Projection result file', type=str, metavar='FILE')
|
109 |
-
@click.option('--projected_s', help='Projection result file', type=str, metavar='FILE')
|
110 |
-
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
|
111 |
-
|
112 |
-
def generate_images(
|
113 |
-
ctx: click.Context,
|
114 |
-
network_pkl: str,
|
115 |
-
seeds: Optional[List[int]],
|
116 |
-
truncation_psi: float,
|
117 |
-
noise_mode: str,
|
118 |
outdir: str,
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
):
|
123 |
|
124 |
-
print('Loading networks from "%s"...' % network_pkl)
|
125 |
# Use GPU if available
|
126 |
if torch.cuda.is_available():
|
127 |
device = torch.device("cuda")
|
128 |
else:
|
129 |
device = torch.device("cpu")
|
130 |
|
131 |
-
with dnnlib.util.open_url(network_pkl) as f:
|
132 |
-
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
|
133 |
-
|
134 |
os.makedirs(outdir, exist_ok=True)
|
135 |
|
136 |
# Generate images.
|
137 |
for i in G.parameters():
|
138 |
-
|
139 |
|
140 |
ws = np.load(projected_w)['w']
|
141 |
ws = torch.tensor(ws, device=device)
|
@@ -145,14 +102,12 @@ def generate_images(
|
|
145 |
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim])
|
146 |
ws = ws.to(torch.float32)
|
147 |
|
148 |
-
|
149 |
w_idx = 0
|
150 |
for res in G.synthesis.block_resolutions:
|
151 |
block = getattr(G.synthesis, f'b{res}')
|
152 |
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
|
153 |
w_idx += block.num_conv
|
154 |
|
155 |
-
|
156 |
styles = torch.zeros(1,26,512, device=device)
|
157 |
styles_idx = 0
|
158 |
temp_shapes = []
|
@@ -160,29 +115,24 @@ def generate_images(
|
|
160 |
block = getattr(G.synthesis, f'b{res}')
|
161 |
|
162 |
if res == 4:
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
else:
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
temp_shapes.append(temp_shape)
|
181 |
|
182 |
-
|
183 |
styles = styles.detach()
|
184 |
np.savez(f'{outdir}/input.npz', s=styles.cpu().numpy())
|
185 |
-
|
186 |
-
|
187 |
-
if __name__ == "__main__":
|
188 |
-
generate_images()
|
|
|
10 |
|
11 |
import os
|
12 |
import re
|
13 |
+
from typing import List
|
14 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
import numpy as np
|
|
|
|
|
16 |
import torch
|
|
|
|
|
|
|
|
|
17 |
|
18 |
from torch_utils import misc
|
19 |
from torch_utils import persistence
|
|
|
72 |
out.append(index % dim)
|
73 |
index = index // dim
|
74 |
return tuple(reversed(out))
|
75 |
+
|
76 |
|
77 |
+
def w_to_s(
|
78 |
+
G,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
outdir: str,
|
80 |
+
projected_w: str,
|
81 |
+
truncation_psi: float = 0.7,
|
82 |
+
noise_mode: str = "const",
|
83 |
):
|
84 |
|
|
|
85 |
# Use GPU if available
|
86 |
if torch.cuda.is_available():
|
87 |
device = torch.device("cuda")
|
88 |
else:
|
89 |
device = torch.device("cpu")
|
90 |
|
|
|
|
|
|
|
91 |
os.makedirs(outdir, exist_ok=True)
|
92 |
|
93 |
# Generate images.
|
94 |
for i in G.parameters():
|
95 |
+
i.requires_grad = True
|
96 |
|
97 |
ws = np.load(projected_w)['w']
|
98 |
ws = torch.tensor(ws, device=device)
|
|
|
102 |
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim])
|
103 |
ws = ws.to(torch.float32)
|
104 |
|
|
|
105 |
w_idx = 0
|
106 |
for res in G.synthesis.block_resolutions:
|
107 |
block = getattr(G.synthesis, f'b{res}')
|
108 |
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
|
109 |
w_idx += block.num_conv
|
110 |
|
|
|
111 |
styles = torch.zeros(1,26,512, device=device)
|
112 |
styles_idx = 0
|
113 |
temp_shapes = []
|
|
|
115 |
block = getattr(G.synthesis, f'b{res}')
|
116 |
|
117 |
if res == 4:
|
118 |
+
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
|
119 |
+
styles[0,:1,:] = block.conv1.affine(cur_ws[0,:1,:])
|
120 |
+
styles[0,1:2,:] = block.torgb.affine(cur_ws[0,1:2,:])
|
121 |
|
122 |
+
block.conv1.affine = torch.nn.Identity()
|
123 |
+
block.torgb.affine = torch.nn.Identity()
|
124 |
+
styles_idx += 2
|
125 |
else:
|
126 |
+
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
|
127 |
+
styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:])
|
128 |
+
styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:])
|
129 |
+
styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:])
|
130 |
+
|
131 |
+
block.conv0.affine = torch.nn.Identity()
|
132 |
+
block.conv1.affine = torch.nn.Identity()
|
133 |
+
block.torgb.affine = torch.nn.Identity()
|
134 |
+
styles_idx += 3
|
135 |
temp_shapes.append(temp_shape)
|
136 |
|
|
|
137 |
styles = styles.detach()
|
138 |
np.savez(f'{outdir}/input.npz', s=styles.cpu().numpy())
|
|
|
|
|
|
|
|