mhm
Create app.py
48dc89b verified
raw
history blame
12.1 kB
import json
import os
import shutil
import subprocess
import sys
import time
import math
import cv2
import requests
from pydub import AudioSegment
import numpy as np
from dotenv import load_dotenv
import gradio as gr
# Load environment variables from .env file
load_dotenv(override=True)
# Read API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
LEMONFOX_API_KEY = os.getenv("LEMONFOX_API_KEY")
narration_api = "openai"
def parse(narration):
data = []
narrations = []
lines = narration.split("\n")
for line in lines:
if line.startswith('Narrator: '):
text = line.replace('Narrator: ', '')
data.append({
"type": "text",
"content": text.strip('"'),
})
narrations.append(text.strip('"'))
elif line.startswith('['):
background = line.strip('[]')
data.append({
"type": "image",
"description": background,
})
return data, narrations
def create(data, output_folder, voice="shimmer"): # Add voice parameter with default value
if not os.path.exists(output_folder):
os.makedirs(output_folder)
n = 0
for element in data:
if element["type"] != "text":
continue
n += 1
output_file = os.path.join(output_folder, f"narration_{n}.mp3")
if narration_api == "openai":
tts_url = 'https://api.openai.com/v1/audio/speech'
headers = {
'Authorization': f'Bearer {OPENAI_API_KEY}',
'Content-Type': 'application/json'
}
payload = {
"model": "tts-1",
"input": element["content"],
"voice": voice # Use the selected voice here
}
response = requests.post(tts_url, json=payload, headers=headers)
if response.status_code == 200:
with open(output_file, "wb") as f:
f.write(response.content)
else:
print(f"Failed to generate audio for prompt: {element['content']}. Status Code: {response.status_code}")
def generate(prompt, output_file, size="576x1024"):
url = 'https://api.lemonfox.ai/v1/images/generations'
headers = {
'Authorization': LEMONFOX_API_KEY,
'Content-Type': 'application/json'
}
data = {
'prompt': prompt,
'size': size,
'n': 1
}
try:
response = requests.post(url, json=data, headers=headers)
if response.ok:
response_data = response.json()
if 'data' in response_data and len(response_data['data']) > 0:
image_info = response_data['data'][0]
image_url = image_info['url']
image_response = requests.get(image_url)
with open(output_file, 'wb') as f:
f.write(image_response.content)
else:
print(f"No image data found for prompt: {prompt}")
else:
print(f"Failed to generate image for prompt: {prompt}. Status Code: {response.status_code}")
except Exception as e:
print(f"Error occurred while processing prompt: {prompt}")
print(str(e))
def create_from_data(data, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
image_number = 0
for element in data:
if element["type"] != "image":
continue
image_number += 1
image_name = f"image_{image_number}.webp"
generate(element["description"], os.path.join(output_dir, image_name))
def get_audio_duration(audio_file):
return len(AudioSegment.from_file(audio_file))
def resize_image(image, width, height):
aspect_ratio = image.shape[1] / image.shape[0]
if aspect_ratio > (width / height):
new_width = width
new_height = int(width / aspect_ratio)
else:
new_height = height
new_width = int(height * aspect_ratio)
return cv2.resize(image, (new_width, new_height))
def write_text(text, frame, video_writer):
font = cv2.FONT_HERSHEY_SIMPLEX
white_color = (255, 255, 255)
black_color = (0, 0, 0)
thickness = 10
font_scale = 3
border = 5
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
text_x = (frame.shape[1] - text_size[0]) // 2
text_y = (frame.shape[0] + text_size[1]) // 2
org = (text_x, text_y)
frame = cv2.putText(frame, text, org, font, font_scale, black_color, thickness + border * 2, cv2.LINE_AA)
frame = cv2.putText(frame, text, org, font, font_scale, white_color, thickness, cv2.LINE_AA)
video_writer.write(frame)
def add_narration_to_video(narrations, input_video, output_dir, output_file, text_color, text_position):
offset = 50
cap = cv2.VideoCapture(input_video)
temp_video = os.path.join(output_dir, "with_transcript.mp4") # Change file extension to MP4
out = cv2.VideoWriter(temp_video, cv2.VideoWriter_fourcc(*'mp4v'), 30, (int(cap.get(3)), int(cap.get(4))))
full_narration = AudioSegment.empty()
for i, narration in enumerate(narrations):
audio = os.path.join(output_dir, "narrations", f"narration_{i+1}.mp3")
duration = get_audio_duration(audio)
narration_frames = math.floor(duration / 1000 * 30)
full_narration += AudioSegment.from_file(audio)
char_count = len(narration.replace(" ", ""))
ms_per_char = duration / char_count
frames_written = 0
words = narration.split(" ")
for w, word in enumerate(words):
word_ms = len(word) * ms_per_char
if i == 0 and w == 0:
word_ms -= offset
if word_ms < 0:
word_ms = 0
for _ in range(math.floor(word_ms/1000*30)):
ret, frame = cap.read()
if not ret:
break
write_text(word, frame, out)
frames_written += 1
for _ in range(narration_frames - frames_written):
ret, frame = cap.read()
out.write(frame)
while out.isOpened():
ret, frame = cap.read()
if not ret:
break
out.write(frame)
temp_narration = os.path.join(output_dir, "narration.mp3")
full_narration.export(temp_narration, format="mp3")
cap.release()
out.release()
cv2.destroyAllWindows()
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', temp_video,
'-i', temp_narration,
'-map', '0:v',
'-map', '1:a',
'-c:v', 'libx264', # Use H.264 codec
'-c:a', 'aac',
'-strict', 'experimental',
os.path.join(output_dir, output_file)
]
subprocess.run(ffmpeg_command, capture_output=True)
os.remove(temp_video)
os.remove(temp_narration)
def create_video(narrations, output_dir, output_file, text_color, text_position):
width, height = 1080, 1920
frame_rate = 30
fade_time = 1000
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Change codec to MP4V
temp_video = os.path.join(output_dir, "temp_video.mp4") # Change file extension to MP4
out = cv2.VideoWriter(temp_video, fourcc, frame_rate, (width, height))
image_paths = os.listdir(os.path.join(output_dir, "images"))
image_count = len(image_paths)
for i in range(image_count):
image1 = cv2.imread(os.path.join(output_dir, "images", f"image_{i+1}.webp"))
if i+1 < image_count:
image2 = cv2.imread(os.path.join(output_dir, "images", f"image_{i+2}.webp"))
else:
image2 = cv2.imread(os.path.join(output_dir, "images", f"image_1.webp"))
image1 = resize_image(image1, width, height)
image2 = resize_image(image2, width, height)
narration = os.path.join(output_dir, "narrations", f"narration_{i+1}.mp3")
duration = get_audio_duration(narration)
if i > 0:
duration -= fade_time
if i == image_count-1:
duration -= fade_time
for _ in range(math.floor(duration/1000*30)):
vertical_video_frame = np.zeros((height, width, 3), dtype=np.uint8)
vertical_video_frame[:image1.shape[0], :] = image1
out.write(vertical_video_frame)
for alpha in np.linspace(0, 1, math.floor(fade_time/1000*30)):
blended_image = cv2.addWeighted(image1, 1 - alpha, image2, alpha, 0)
vertical_video_frame = np.zeros((height, width, 3), dtype=np.uint8)
vertical_video_frame[:image1.shape[0], :] = blended_image
out.write(vertical_video_frame)
out.release()
cv2.destroyAllWindows()
add_narration_to_video(narrations, temp_video, output_dir, output_file, text_color, text_position)
os.remove(temp_video)
def generate_video(topic, voice="shimmer"):
short_id = str(int(time.time()))
basedir = os.path.join("shorts", short_id)
if not os.path.exists(basedir):
os.makedirs(basedir)
filename = topic.replace("_", " ").replace("/", "_").replace(".", "_")
output_file = f"{filename}.mp4" # Change file extension to MP4
chat_url = 'https://api.openai.com/v1/chat/completions'
headers = {
'Authorization': f'Bearer {OPENAI_API_KEY}',
'Content-Type': 'application/json'
}
payload = {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are a viral youTube short video creator."
},
{
"role": "user",
"content": f"""Make a 60 second video on: \n\n{topic} and you will need to generate a very short description of images for each of the scenes. They will be used for background AI images. Note that the script will be fed into a text-to-speech engine, so dont use special characters. Respond with a pair of an image prompt in square brackets and a script below it. Both of them should be on their own lines, as follows:
###
[Description of a background image]
Narrator: "Sentence of narration"
###"""
}
]
}
response = requests.post(chat_url, json=payload, headers=headers)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
response_text = response_text.replace("’", "'").replace("`", "'").replace("…", "...").replace("“", '"').replace("”", '"')
with open(os.path.join(basedir, f"response.txt"), "a") as f:
f.write(response_text + "\n")
data, narrations = parse(response_text)
with open(os.path.join(basedir, f"data.json"), "a") as f:
json.dump(data, f, ensure_ascii=False)
f.write("\n")
print(f"Generating narration for: {topic}...")
create(data, os.path.join(basedir, f"narrations"), voice=voice)
print("Generating images...")
create_from_data(data, os.path.join(basedir, f"images"))
print("Generating video...")
create_video(narrations, basedir, output_file, text_color="white", text_position="center")
print("Deleting files and folders...")
os.remove(os.path.join(basedir, "response.txt"))
os.remove(os.path.join(basedir, "data.json"))
shutil.rmtree(os.path.join(basedir, "narrations"))
shutil.rmtree(os.path.join(basedir, "images"))
print(f"DONE! Here's your video: {os.path.join(basedir, output_file)}")
return os.path.join(basedir, output_file)
else:
print(f"Failed to generate script for source material: {topic}. Status Code: {response.status_code}")
return None
iface = gr.Interface(
concurrency_limit=20,
fn=generate_video,
inputs=["text", gr.Dropdown(['alloy', 'shimmer', 'fable', 'onyx', 'nova', 'echo'], label="Select Voice")],
outputs="video",
css=".gradio-container {display: none}"
)
iface.launch()