File size: 1,476 Bytes
0cba43f
 
 
 
 
 
 
 
 
2e086e2
 
 
0cba43f
 
2e086e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cba43f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import streamlit as st
from utils.levels import complete_level, initialize_level, render_page, get_level
from utils.login import initialize_login

initialize_login()
initialize_level()

LEVEL = 0

import cv2



def intro_page():
    st.title("Webcam Live Feed")
    run = st.checkbox('Run')
    FRAME_WINDOW = st.image([])
    camera = cv2.VideoCapture(0)

    while run:
        _, frame = camera.read()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        FRAME_WINDOW.image(frame)
    else:
        st.write('Stopped')
    # st.header("Face Recognition")
    # st.subheader("Introduction")

    # st.write(
    #     """
    #     Welcome to the interactive tutorial on creating your very own Face Recognition Application!
    #     """
    # )
    #
    # st.image(
    #     "https://static.wixstatic.com/media/abb909_35aa4b27e4b840659a20fd69f0a18354~mv2.gif",
    #     use_column_width=True,
    # )
    #
    # st.write(
    #     """
    #     In this tutorial, you will learn how to build a simple application that can detect and recognise faces from a given photo. Face recognition has revolutionized
    # various industries, including security, entertainment, and personal identification. Are you ready to dive into the exciting world of face recognition?
    # """
    # )
    #
    # st.info(f"Click on the button below to start the tutorial!")
    #
    # if st.button("I am Ready!"):
    #     complete_level(LEVEL)


render_page(intro_page, LEVEL)