images / app.py
aimersion's picture
Update app.py
d277227 verified
raw
history blame
5.62 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
from diffusers import DiffusionPipeline
# Ensure sentencepiece is installed in your environment
try:
import sentencepiece
except ImportError:
raise ImportError("The 'sentencepiece' library is required but not installed. Please add it to your environment.")
# Set the device and dtype
dtype = torch.float16 # Change to float16 for better compatibility and performance
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the diffusion pipeline without requiring an API token
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, negative_prompt=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
start_time = time.time()
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
raise ValueError("Image size exceeds the maximum allowed dimensions.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
# Include negative prompts in the diffusion pipeline call
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt, # Using the negative prompt here
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
except Exception as e:
print(f"Error generating image: {e}")
return None, seed, f"Error: {str(e)}"
if time.time() - start_time > 60: # 60 seconds timeout
return None, seed, "Image generation took too long and was cancelled."
return image, seed, None
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
padding: 20px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
border-radius: 10px;
background-color: #f8f9fa;
}
#run-button {
background-color: #007bff;
color: white;
border: none;
padding: 10px 20px;
font-size: 16px;
border-radius: 5px;
}
#run-button:hover {
background-color: #0056b3;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# Custom Image Creator
A 12B param rectified flow transformer from [FLUX.1](https://blackforestlabs.ai/) for 4-step generation.
""", elem_id="title")
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt...",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
show_label=False,
max_lines=1,
placeholder="Enter negative prompts (what to avoid)...",
)
run_button = gr.Button("Run", elem_id="run-button")
result = gr.Image(label="Result", show_label=False, interactive=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
tooltip="Seed value for reproducibility. Randomize for unique results."
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
tooltip="Adjust the width of the generated image."
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
tooltip="Adjust the height of the generated image."
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
tooltip="Controls the quality and coherence of the output."
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.5,
value=7.5,
tooltip="Higher values result in outputs closer to the prompt."
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
outputs=[result, seed],
)
gr.Markdown("""
## Save Your Image
Right-click on the image and select 'Save As' to download the generated image.
""")
demo.launch()