|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
import time |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
try: |
|
import sentencepiece |
|
except ImportError: |
|
raise ImportError("The 'sentencepiece' library is required but not installed. Please add it to your environment.") |
|
|
|
|
|
dtype = torch.float16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
@spaces.GPU() |
|
def infer(prompt, negative_prompt=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): |
|
start_time = time.time() |
|
|
|
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE: |
|
raise ValueError("Image size exceeds the maximum allowed dimensions.") |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
try: |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
guidance_scale=guidance_scale |
|
).images[0] |
|
except Exception as e: |
|
print(f"Error generating image: {e}") |
|
return None, seed, f"Error: {str(e)}" |
|
|
|
if time.time() - start_time > 60: |
|
return None, seed, "Image generation took too long and was cancelled." |
|
|
|
return image, seed, None |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
padding: 20px; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); |
|
border-radius: 10px; |
|
background-color: #f8f9fa; |
|
} |
|
#run-button { |
|
background-color: #007bff; |
|
color: white; |
|
border: none; |
|
padding: 10px 20px; |
|
font-size: 16px; |
|
border-radius: 5px; |
|
} |
|
#run-button:hover { |
|
background-color: #0056b3; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(""" |
|
# Custom Image Creator |
|
A 12B param rectified flow transformer from [FLUX.1](https://blackforestlabs.ai/) for 4-step generation. |
|
""", elem_id="title") |
|
|
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt...", |
|
) |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter negative prompts (what to avoid)...", |
|
) |
|
run_button = gr.Button("Run", elem_id="run-button") |
|
|
|
result = gr.Image(label="Result", show_label=False, interactive=True) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
tooltip="Seed value for reproducibility. Randomize for unique results." |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
tooltip="Adjust the width of the generated image." |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
tooltip="Adjust the height of the generated image." |
|
) |
|
|
|
with gr.Row(): |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=4, |
|
tooltip="Controls the quality and coherence of the output." |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.0, |
|
maximum=20.0, |
|
step=0.5, |
|
value=7.5, |
|
tooltip="Higher values result in outputs closer to the prompt." |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=infer, |
|
inputs=[prompt], |
|
outputs=[result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale], |
|
outputs=[result, seed], |
|
) |
|
|
|
gr.Markdown(""" |
|
## Save Your Image |
|
Right-click on the image and select 'Save As' to download the generated image. |
|
""") |
|
|
|
demo.launch() |