aimersion commited on
Commit
6177b55
1 Parent(s): d277227

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -112
app.py CHANGED
@@ -3,6 +3,7 @@ import numpy as np
3
  import random
4
  import spaces
5
  import torch
 
6
  import time
7
  from diffusers import DiffusionPipeline
8
 
@@ -13,7 +14,7 @@ except ImportError:
13
  raise ImportError("The 'sentencepiece' library is required but not installed. Please add it to your environment.")
14
 
15
  # Set the device and dtype
16
- dtype = torch.float16 # Change to float16 for better compatibility and performance
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
  # Load the diffusion pipeline without requiring an API token
@@ -23,141 +24,82 @@ MAX_SEED = np.iinfo(np.int32).max
23
  MAX_IMAGE_SIZE = 2048
24
 
25
  @spaces.GPU()
26
- def infer(prompt, negative_prompt=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
27
  start_time = time.time()
28
-
29
  if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
30
  raise ValueError("Image size exceeds the maximum allowed dimensions.")
31
-
32
  if randomize_seed:
33
  seed = random.randint(0, MAX_SEED)
34
  generator = torch.Generator(device=device).manual_seed(seed)
35
-
36
  try:
37
- # Include negative prompts in the diffusion pipeline call
38
  image = pipe(
39
- prompt=prompt,
40
- negative_prompt=negative_prompt, # Using the negative prompt here
41
  width=width,
42
  height=height,
43
- num_inference_steps=num_inference_steps,
44
  generator=generator,
45
  guidance_scale=guidance_scale
46
  ).images[0]
47
  except Exception as e:
48
  print(f"Error generating image: {e}")
49
  return None, seed, f"Error: {str(e)}"
50
-
51
- if time.time() - start_time > 60: # 60 seconds timeout
52
  return None, seed, "Image generation took too long and was cancelled."
53
 
54
  return image, seed, None
55
 
56
  examples = [
57
- "a tiny astronaut hatching from an egg on the moon",
58
- "a cat holding a sign that says hello world",
59
- "an anime illustration of a wiener schnitzel",
60
  ]
61
 
62
- css = """
63
- #col-container {
64
- margin: 0 auto;
65
- max-width: 640px;
66
- padding: 20px;
67
- box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
68
- border-radius: 10px;
69
- background-color: #f8f9fa;
70
- }
71
- #run-button {
72
- background-color: #007bff;
73
- color: white;
74
- border: none;
75
- padding: 10px 20px;
76
- font-size: 16px;
77
- border-radius: 5px;
78
- }
79
- #run-button:hover {
80
- background-color: #0056b3;
81
- }
82
- """
83
-
84
- with gr.Blocks(css=css) as demo:
85
- with gr.Column(elem_id="col-container"):
86
- gr.Markdown("""
87
- # Custom Image Creator
88
- A 12B param rectified flow transformer from [FLUX.1](https://blackforestlabs.ai/) for 4-step generation.
89
- """, elem_id="title")
90
-
91
- prompt = gr.Textbox(
92
- label="Prompt",
93
- show_label=False,
94
- max_lines=1,
95
- placeholder="Enter your prompt...",
96
- )
97
- negative_prompt = gr.Textbox(
98
- label="Negative Prompt",
99
- show_label=False,
100
- max_lines=1,
101
- placeholder="Enter negative prompts (what to avoid)...",
102
- )
103
- run_button = gr.Button("Run", elem_id="run-button")
104
-
105
- result = gr.Image(label="Result", show_label=False, interactive=True)
106
-
107
- with gr.Accordion("Advanced Settings", open=False):
108
- seed = gr.Slider(
109
- label="Seed",
110
- minimum=0,
111
- maximum=MAX_SEED,
112
- step=1,
113
- value=0,
114
- tooltip="Seed value for reproducibility. Randomize for unique results."
115
  )
 
 
 
 
 
 
 
 
 
 
 
 
116
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
117
-
118
- with gr.Row():
119
- width = gr.Slider(
120
- label="Width",
121
- minimum=256,
122
- maximum=MAX_IMAGE_SIZE,
123
- step=32,
124
- value=1024,
125
- tooltip="Adjust the width of the generated image."
126
- )
127
- height = gr.Slider(
128
- label="Height",
129
- minimum=256,
130
- maximum=MAX_IMAGE_SIZE,
131
- step=32,
132
- value=1024,
133
- tooltip="Adjust the height of the generated image."
134
- )
135
-
136
- with gr.Row():
137
- num_inference_steps = gr.Slider(
138
- label="Number of inference steps",
139
- minimum=1,
140
- maximum=50,
141
- step=1,
142
- value=4,
143
- tooltip="Controls the quality and coherence of the output."
144
- )
145
- guidance_scale = gr.Slider(
146
- label="Guidance Scale",
147
- minimum=0.0,
148
- maximum=20.0,
149
- step=0.5,
150
- value=7.5,
151
- tooltip="Higher values result in outputs closer to the prompt."
152
- )
153
-
154
- gr.Examples(
155
- examples=examples,
156
- fn=infer,
157
- inputs=[prompt],
158
- outputs=[result, seed],
159
- cache_examples="lazy"
160
- )
161
 
162
  run_button.click(
163
  fn=infer,
@@ -169,5 +111,5 @@ with gr.Blocks(css=css) as demo:
169
  ## Save Your Image
170
  Right-click on the image and select 'Save As' to download the generated image.
171
  """)
172
-
173
  demo.launch()
 
3
  import random
4
  import spaces
5
  import torch
6
+ import os
7
  import time
8
  from diffusers import DiffusionPipeline
9
 
 
14
  raise ImportError("The 'sentencepiece' library is required but not installed. Please add it to your environment.")
15
 
16
  # Set the device and dtype
17
+ dtype = torch.float16
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
19
 
20
  # Load the diffusion pipeline without requiring an API token
 
24
  MAX_IMAGE_SIZE = 2048
25
 
26
  @spaces.GPU()
27
+ def infer(prompt, negative_prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
28
  start_time = time.time()
29
+
30
  if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
31
  raise ValueError("Image size exceeds the maximum allowed dimensions.")
32
+
33
  if randomize_seed:
34
  seed = random.randint(0, MAX_SEED)
35
  generator = torch.Generator(device=device).manual_seed(seed)
36
+
37
  try:
 
38
  image = pipe(
39
+ prompt=prompt,
40
+ negative_prompt=negative_prompt,
41
  width=width,
42
  height=height,
43
+ num_inference_steps=num_inference_steps,
44
  generator=generator,
45
  guidance_scale=guidance_scale
46
  ).images[0]
47
  except Exception as e:
48
  print(f"Error generating image: {e}")
49
  return None, seed, f"Error: {str(e)}"
50
+
51
+ if time.time() - start_time > 60:
52
  return None, seed, "Image generation took too long and was cancelled."
53
 
54
  return image, seed, None
55
 
56
  examples = [
57
+ ["a tiny astronaut hatching from an egg on the moon", "blurry, low quality"],
58
+ ["a cat holding a sign that says hello world", "dog, text, writing"],
59
+ ["an anime illustration of a wiener schnitzel", "realistic, photograph"],
60
  ]
61
 
62
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
63
+ gr.Markdown("""
64
+ # Custom Image Creator
65
+ 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
66
+ [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1)]
67
+ """)
68
+
69
+ with gr.Row():
70
+ with gr.Column(scale=2):
71
+ prompt = gr.Textbox(
72
+ label="Prompt",
73
+ placeholder="Enter your prompt",
74
+ lines=3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  )
76
+ negative_prompt = gr.Textbox(
77
+ label="Negative Prompt",
78
+ placeholder="Enter things to avoid in the image",
79
+ lines=2
80
+ )
81
+ run_button = gr.Button("Generate Image")
82
+ with gr.Column(scale=3):
83
+ result = gr.Image(label="Generated Image")
84
+
85
+ with gr.Accordion("Advanced Settings", open=False):
86
+ with gr.Row():
87
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
88
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
89
+ with gr.Row():
90
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
91
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
92
+ with gr.Row():
93
+ num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
94
+ guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.5, value=7.5)
95
+
96
+ gr.Examples(
97
+ examples=examples,
98
+ fn=infer,
99
+ inputs=[prompt, negative_prompt],
100
+ outputs=[result, seed],
101
+ cache_examples=True
102
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  run_button.click(
105
  fn=infer,
 
111
  ## Save Your Image
112
  Right-click on the image and select 'Save As' to download the generated image.
113
  """)
114
+
115
  demo.launch()