FLUX-VisionReply / inference /test_personalized.py
gokaygokay's picture
full_files
2f4febc
raw
history blame
7.76 kB
import os
import yaml
import torch
from tqdm import tqdm
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from train import WurstCore_personalized as WurstCoreC
import torch.nn.functional as F
import numpy as np
import random
import math
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument( '--height', type=int, default=3072, help='image height')
parser.add_argument('--width', type=int, default=4096, help='image width')
parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
parser.add_argument('--seed', type=int, default=23, help='random seed')
parser.add_argument('--config_c', type=str,
default="configs/training/lora_personalization.yaml" ,help='config file for stage c, latent generation')
parser.add_argument('--config_b', type=str,
default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
parser.add_argument( '--prompt', type=str,
default='A photo of cat [roubaobao] with sunglasses, Time Square in the background, high quality, detail rich, 8k', help='text prompt')
parser.add_argument( '--num_image', type=int, default=4, help='how many images generated')
parser.add_argument( '--output_dir', type=str, default='figures/personalized/', help='output directory for generated image')
parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
parser.add_argument( '--pretrained_path_lora', type=str, default='models/lora_cat.safetensors',help='pretrained path of personalized lora parameter')
parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
# SETUP STAGE C
with open(args.config_c, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
with open(args.config_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
extras = core.setup_extras_pre()
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
print("STAGE C READY")
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
print("STAGE B READY")
batch_size = 1
captions = [args.prompt] * args.num_image
height, width = args.height, args.width
save_dir = args.output_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
pretrained_pth = args.pretrained_path
sdd = torch.load(pretrained_pth, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_norm.load_state_dict(collect_sd)
pretrained_pth_lora = args.pretrained_path_lora
sdd = torch.load(pretrained_pth_lora, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_lora.load_state_dict(collect_sd)
models.generator.eval()
models.train_norm.eval()
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
# Stage C Parameters
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 1
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
# Stage B Parameters
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
for cnt, caption in enumerate(captions):
batch = {'captions': [caption] * batch_size}
conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
for cnt, caption in enumerate(captions):
batch = {'captions': [caption] * batch_size}
conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
with torch.no_grad():
models.generator.cuda()
print('STAGE C GENERATION***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
models.generator.cpu()
torch.cuda.empty_cache()
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
print('STAGE B + A DECODING***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
torch.cuda.empty_cache()
imgs = show_images(sampled)
for idx, img in enumerate(imgs):
print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
print('finished! Results at ', save_dir )