Spaces:
Running
on
Zero
Running
on
Zero
#import spaces | |
import json | |
import subprocess | |
import os | |
import sys | |
def run_command(command): | |
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) | |
output, error = process.communicate() | |
if process.returncode != 0: | |
print(f"Error executing command: {command}") | |
print(error.decode('utf-8')) | |
exit(1) | |
return output.decode('utf-8') | |
def install_packages(): | |
# Clone the repository with submodules | |
run_command("git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git") | |
# Change to the cloned directory | |
os.chdir("llama-cpp-python") | |
# Checkout the specific commit in the llama.cpp submodule | |
os.chdir("vendor/llama.cpp") | |
run_command("git checkout 50e0535") | |
os.chdir("../..") | |
# Upgrade pip | |
run_command("pip install --upgrade pip") | |
# Install all optional dependencies | |
run_command("pip install -e .[all]") | |
# Clear the local build cache | |
run_command("make clean") | |
# Reinstall the package | |
run_command("pip install -e .") | |
# Install llama-cpp-agent | |
run_command("pip install llama-cpp-agent") | |
print("Installation complete!") | |
try: | |
install_packages() | |
# If installation is successful, import the libraries | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
print("Libraries imported successfully!") | |
except Exception as e: | |
print(f"Installation failed or libraries couldn't be imported: {str(e)}") | |
sys.exit(1) | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
hf_hub_download( | |
repo_id="MaziyarPanahi/Mistral-Nemo-Instruct-2407-GGUF", | |
filename="Mistral-Nemo-Instruct-2407.Q5_K_M.gguf", | |
local_dir="./models" | |
) | |
llm = None | |
llm_model = None | |
#@spaces.GPU(duration=120) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
chat_template = MessagesFormatterType.MISTRAL | |
global llm | |
global llm_model | |
if llm is None or llm_model != model: | |
llm = Llama( | |
model_path=f"models/{model}", | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=32768, | |
) | |
llm_model = model | |
provider = LlamaCppPythonProvider(llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
for msn in history: | |
user = { | |
'role': Roles.user, | |
'content': msn[0] | |
} | |
assistant = { | |
'role': Roles.assistant, | |
'content': msn[1] | |
} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs | |
description = """<p><center> | |
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407" target="_blank">[Instruct Model]</a> | |
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Base-2407" target="_blank">[Base Model]</a> | |
<a href="https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF" target="_blank">[GGUF Version]</a> | |
</center></p> | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown([ | |
'Mistral-Nemo-Instruct-2407.Q5_K_M.gguf' | |
], | |
value="Mistral-Nemo-Instruct-2407.Q5_K_M.gguf", | |
label="Model" | |
), | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=40, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
], | |
retry_btn="Retry", | |
undo_btn="Undo", | |
clear_btn="Clear", | |
submit_btn="Send", | |
title="Chat with Mistral-NeMo using llama.cpp", | |
description=description, | |
chatbot=gr.Chatbot( | |
scale=1, | |
likeable=False, | |
show_copy_button=True | |
) | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |