FLUX-VisionReply / train /train_t2i.py
gokaygokay's picture
full_files
2f4febc
raw
history blame
34.7 kB
import torch
import json
import yaml
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
from warmup_scheduler import GradualWarmupScheduler
import torch.multiprocessing as mp
import numpy as np
import os
import sys
sys.path.append(os.path.abspath('./'))
from dataclasses import dataclass
from torch.distributed import init_process_group, destroy_process_group, barrier
from gdf import GDF_dual_fixlrt as GDF
from gdf import EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from torchtools.transforms import SmartCrop
from fractions import Fraction
from modules.effnet import EfficientNetEncoder
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from modules.previewer import Previewer
from core.data import Bucketeer
from train.base import DataCore, TrainingCore
from tqdm import tqdm
from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager
from train.dist_core import *
import glob
from torch.utils.data import DataLoader, Dataset
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from PIL import Image
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
from core.utils import Base
from modules.common_ckpt import LayerNorm2d, GlobalResponseNorm
import torch.nn.functional as F
import functools
import math
import copy
import random
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
Image.MAX_IMAGE_PIXELS = None
torch.manual_seed(23)
random.seed(23)
np.random.seed(23)
#7978026
class Null_Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
pass
def identity(x):
if isinstance(x, bytes):
x = x.decode('utf-8')
return x
def check_nan_inmodel(model, meta=''):
for name, param in model.named_parameters():
if torch.isnan(param).any():
print(f"nan detected in {name}", meta)
return True
print('no nan', meta)
return False
class mydist_dataset(Dataset):
def __init__(self, rootpath, img_processor=None):
self.img_pathlist = glob.glob(os.path.join(rootpath, '*', '*.jpg'))
self.img_processor = img_processor
self.length = len( self.img_pathlist)
def __getitem__(self, idx):
imgpath = self.img_pathlist[idx]
json_file = imgpath.replace('.jpg', '.json')
with open(json_file, 'r') as file:
info = json.load(file)
txt = info['caption']
if txt is None:
txt = ' '
try:
img = Image.open(imgpath).convert('RGB')
w, h = img.size
if self.img_processor is not None:
img = self.img_processor(img)
except:
print('exception', imgpath)
return self.__getitem__(random.randint(0, self.length -1 ) )
return dict(captions=txt, images=img)
def __len__(self):
return self.length
class WurstCore(TrainingCore, DataCore, WarpCore):
@dataclass(frozen=True)
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
# TRAINING PARAMS
lr: float = EXPECTED_TRAIN
warmup_updates: int = EXPECTED_TRAIN
dtype: str = None
# MODEL VERSION
model_version: str = EXPECTED # 3.6B or 1B
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
# CHECKPOINT PATHS
effnet_checkpoint_path: str = EXPECTED
previewer_checkpoint_path: str = EXPECTED
generator_checkpoint_path: str = None
# gdf customization
adaptive_loss_weight: str = None
use_ddp: bool=EXPECTED
@dataclass(frozen=True)
class Data(Base):
dataset: Dataset = EXPECTED
dataloader: DataLoader = EXPECTED
iterator: any = EXPECTED
sampler: DistributedSampler = EXPECTED
@dataclass(frozen=True)
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
effnet: nn.Module = EXPECTED
previewer: nn.Module = EXPECTED
train_norm: nn.Module = EXPECTED
@dataclass(frozen=True)
class Schedulers(WarpCore.Schedulers):
generator: any = None
@dataclass(frozen=True)
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
gdf: GDF = EXPECTED
sampling_configs: dict = EXPECTED
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
info: TrainingCore.Info
config: Config
def setup_extras_pre(self) -> Extras:
gdf = GDF(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
)
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
if self.info.adaptive_loss is not None:
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
clip_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
)
])
if self.config.training:
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
])
else:
transforms = None
return self.Extras(
gdf=gdf,
sampling_configs=sampling_configs,
transforms=transforms,
effnet_preprocess=effnet_preprocess,
clip_preprocess=clip_preprocess
)
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
eval_image_embeds=False, return_fields=None):
conditions = super().get_conditions(
batch, models, extras, is_eval, is_unconditional,
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
)
return conditions
def setup_models(self, extras: Extras) -> Models: # configure model
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16
# EfficientNet encoderin
effnet = EfficientNetEncoder()
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
effnet.eval().requires_grad_(False).to(self.device)
del effnet_checkpoint
# Previewer
previewer = Previewer()
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
previewer.eval().requires_grad_(False).to(self.device)
del previewer_checkpoint
@contextmanager
def dummy_context():
yield None
loading_context = dummy_context if self.config.training else init_empty_weights
# Diffusion models
with loading_context():
generator_ema = None
if self.config.model_version == '3.6B':
generator = StageC()
if self.config.ema_start_iters is not None: # default setting
generator_ema = StageC()
elif self.config.model_version == '1B':
print('in line 155 1b light model', self.config.model_version )
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
if self.config.ema_start_iters is not None and self.config.training:
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
else:
raise ValueError(f"Unknown model version {self.config.model_version}")
if loading_context is dummy_context:
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
else:
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
generator._init_extra_parameter()
generator = generator.to(torch.bfloat16).to(self.device)
train_norm = nn.ModuleList()
cnt_norm = 0
for mm in generator.modules():
if isinstance(mm, GlobalResponseNorm):
train_norm.append(Null_Model())
cnt_norm += 1
train_norm.append(generator.agg_net)
train_norm.append(generator.agg_net_up)
total = sum([ param.nelement() for param in train_norm.parameters()])
print('Trainable parameter', total / 1048576)
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')):
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
train_norm.load_state_dict(collect_sd, strict=True)
train_norm.to(self.device).train().requires_grad_(True)
train_norm_ema = copy.deepcopy(train_norm)
train_norm_ema.to(self.device).eval().requires_grad_(False)
if generator_ema is not None:
generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
generator_ema._init_extra_parameter()
pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors')
if os.path.exists(pretrained_pth):
print(pretrained_pth, 'exists')
generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu'))
generator_ema.eval().requires_grad_(False)
check_nan_inmodel(generator, 'generator')
if self.config.use_ddp and self.config.training:
train_norm = DDP(train_norm, device_ids=[self.device], find_unused_parameters=True)
# CLIP encoders
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
return self.Models(
effnet=effnet, previewer=previewer, train_norm = train_norm,
generator=generator, tokenizer=tokenizer, text_model=text_model, image_model=image_model,
)
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
params = []
params += list(models.train_norm.module.parameters())
optimizer = optim.AdamW(params, lr=self.config.lr)
return self.Optimizers(generator=optimizer)
def ema_update(self, ema_model, source_model, beta):
for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()):
param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta)
def sync_ema(self, ema_model):
for param in ema_model.parameters():
torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM)
param.data /= torch.distributed.get_world_size()
def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
optimizer = optim.AdamW(
models.generator.up_blocks.parameters() ,
lr=self.config.lr)
optimizer = self.load_optimizer(optimizer, 'generator_optim',
fsdp_model=models.generator if self.config.use_fsdp else None)
return self.Optimizers(generator=optimizer)
def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers:
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
scheduler.last_epoch = self.info.total_steps
return self.Schedulers(generator=scheduler)
def setup_data(self, extras: Extras) -> WarpCore.Data:
# SETUP DATASET
dataset_path = self.config.webdataset_path
dataset = mydist_dataset(dataset_path, \
torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \
else extras.transforms)
# SETUP DATALOADER
real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps)
sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True)
dataloader = DataLoader(
dataset, batch_size=real_batch_size, num_workers=8, pin_memory=True,
collate_fn=identity if self.config.multi_aspect_ratio is not None else None,
sampler = sampler
)
if self.is_main_node:
print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)")
if self.config.multi_aspect_ratio is not None:
aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio]
dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32,
ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio,
interpolate_nearest=False) # , use_smartcrop=True)
else:
dataloader_iterator = iter(dataloader)
return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler)
def models_to_save(self):
pass
def setup_ddp(self, experiment_id, single_gpu=False, rank=0):
if not single_gpu:
local_rank = rank
process_id = rank
world_size = get_world_size()
self.process_id = process_id
self.is_main_node = process_id == 0
self.device = torch.device(local_rank)
self.world_size = world_size
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '41443'
torch.cuda.set_device(local_rank)
init_process_group(
backend="nccl",
rank=local_rank,
world_size=world_size,
)
print(f"[GPU {process_id}] READY")
else:
self.is_main_node = rank == 0
self.process_id = rank
self.device = torch.device('cuda:0')
self.world_size = 1
print("Running in single thread, DDP not enabled.")
# Training loop --------------------------------
def get_target_lr_size(self, ratio, std_size=24):
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio))
return (h * 32 , w * 32)
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
#batch = next(data.iterator)
batch = data
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
shape_lr = self.get_target_lr_size(ratio)
#print('in line 485', shape_lr, ratio, batch['images'].shape)
with torch.no_grad():
conditions = self.get_conditions(batch, models, extras)
latents = self.encode_latents(batch, models, extras)
latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr)
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, )
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
# 768 1536
require_cond = True
with torch.no_grad():
_, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions)
pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if require_cond else None , **conditions)
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
extras.gdf.loss_weight.update_buckets(logSNR, loss)
return loss, loss_adjusted
def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
if update:
torch.distributed.barrier()
loss_adjusted.backward()
grad_norm = nn.utils.clip_grad_norm_(models.train_norm.module.parameters(), 1.0)
optimizers_dict = optimizers.to_dict()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].step()
schedulers_dict = schedulers.to_dict()
for k in schedulers_dict:
if k != 'training':
schedulers_dict[k].step()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].zero_grad(set_to_none=True)
self.info.total_steps += 1
else:
loss_adjusted.backward()
grad_norm = torch.tensor(0.0).to(self.device)
return grad_norm
def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor:
images = batch['images'].to(self.device)
if target_size is not None:
images = F.interpolate(images, target_size)
return models.effnet(extras.effnet_preprocess(images))
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
return models.previewer(latents)
def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ):
self.is_main_node = (rank == 0)
self.config: self.Config = self.setup_config(config_file_path, config_dict, training)
self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank)
self.info: self.Info = self.setup_info()
def __call__(self, single_gpu=False):
if self.config.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
if self.is_main_node:
print()
print("**STARTIG JOB WITH CONFIG:**")
print(yaml.dump(self.config.to_dict(), default_flow_style=False))
print("------------------------------------")
print()
print("**INFO:**")
print(yaml.dump(vars(self.info), default_flow_style=False))
print("------------------------------------")
print()
# SETUP STUFF
extras = self.setup_extras_pre()
assert extras is not None, "setup_extras_pre() must return a DTO"
data = self.setup_data(extras)
assert data is not None, "setup_data() must return a DTO"
if self.is_main_node:
print("**DATA:**")
print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
models = self.setup_models(extras)
assert models is not None, "setup_models() must return a DTO"
if self.is_main_node:
print("**MODELS:**")
print(yaml.dump({
k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items()
}, default_flow_style=False))
print("------------------------------------")
print()
optimizers = self.setup_optimizers(extras, models)
assert optimizers is not None, "setup_optimizers() must return a DTO"
if self.is_main_node:
print("**OPTIMIZERS:**")
print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
schedulers = self.setup_schedulers(extras, models, optimizers)
assert schedulers is not None, "setup_schedulers() must return a DTO"
if self.is_main_node:
print("**SCHEDULERS:**")
print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
post_extras =self.setup_extras_post(extras, models, optimizers, schedulers)
assert post_extras is not None, "setup_extras_post() must return a DTO"
extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() })
if self.is_main_node:
print("**EXTRAS:**")
print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
# -------
# TRAIN
if self.is_main_node:
print("**TRAINING STARTING...**")
self.train(data, extras, models, optimizers, schedulers)
if single_gpu is False:
barrier()
destroy_process_group()
if self.is_main_node:
print()
print("------------------------------------")
print()
print("**TRAINING COMPLETE**")
def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers,
schedulers: WarpCore.Schedulers):
start_iter = self.info.iter + 1
max_iters = self.config.updates * self.config.grad_accum_steps
if self.is_main_node:
print(f"STARTING AT STEP: {start_iter}/{max_iters}")
if self.is_main_node:
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/')
models.generator.train()
iter_cnt = 0
epoch_cnt = 0
models.train_norm.train()
while True:
epoch_cnt += 1
if self.world_size > 1:
data.sampler.set_epoch(epoch_cnt)
for ggg in range(len(data.dataloader)):
iter_cnt += 1
loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models)
grad_norm = self.backward_pass(
iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted,
models, optimizers, schedulers
)
self.info.iter = iter_cnt
# UPDATE LOSS METRICS
self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01
#print('in line 666 after ema loss', grad_norm, loss.mean().item(), iter_cnt, self.info.ema_loss)
if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()):
print(f" NaN value encountered in training run {self.info.wandb_run_id}", \
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
if self.is_main_node:
logs = {
'loss': self.info.ema_loss,
'backward_loss': loss_adjusted.mean().item(),
'ema_loss': self.info.ema_loss,
'raw_ori_loss': loss.mean().item(),
'grad_norm': grad_norm.item(),
'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0,
'total_steps': self.info.total_steps,
}
if iter_cnt % (self.config.save_every) == 0:
print(iter_cnt, max_iters, logs, epoch_cnt, )
if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters:
# SAVE AND CHECKPOINT STUFF
if np.isnan(loss.mean().item()):
if self.is_main_node and self.config.wandb_project is not None:
print(f"NaN value encountered in training run {self.info.wandb_run_id}", \
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
else:
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
self.info.adaptive_loss = {
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(),
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(),
}
if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0:
print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps )
torch.save(models.train_norm.state_dict(), \
f'{self.config.output_path}/{self.config.experiment_id}/train_norm.safetensors')
torch.save(models.train_norm.state_dict(), \
f'{self.config.output_path}/{self.config.experiment_id}/train_norm_{iter_cnt}.safetensors')
if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters:
if self.is_main_node:
self.sample(models, data, extras)
if self.info.iter >= max_iters:
break
def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
models.generator.eval()
models.train_norm.eval()
with torch.no_grad():
batch = next(data.iterator)
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
shape_lr = self.get_target_lr_size(ratio)
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
latents = self.encode_latents(batch, models, extras)
latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr)
if self.is_main_node:
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
models.generator, conditions,
latents.shape, latents_lr.shape,
unconditions, device=self.device, **extras.sampling_configs
)
if self.is_main_node:
print('sampling results hr latent shape', latents.shape, 'lr latent shape', latents_lr.shape, )
noised_images = torch.cat(
[self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0)
sampled_images = torch.cat(
[self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0)
noised_images_lr = torch.cat(
[self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0)
sampled_images_lr = torch.cat(
[self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0)
images = batch['images']
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2):
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic')
images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic')
collage_img = torch.cat([
torch.cat([i for i in images.cpu()], dim=-1),
torch.cat([i for i in noised_images.cpu()], dim=-1),
torch.cat([i for i in sampled_images.cpu()], dim=-1),
], dim=-2)
collage_img_lr = torch.cat([
torch.cat([i for i in images_lr.cpu()], dim=-1),
torch.cat([i for i in noised_images_lr.cpu()], dim=-1),
torch.cat([i for i in sampled_images_lr.cpu()], dim=-1),
], dim=-2)
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg')
torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg')
models.generator.train()
models.train_norm.train()
print('finish sampling')
def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False):
models.generator.eval()
with torch.no_grad():
if self.is_main_node:
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds)
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
models.generator, conditions,
hr_shape, lr_shape,
unconditions, device=self.device, **extras.sampling_configs
)
if models.generator_ema is not None:
*_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample(
models.generator_ema, conditions,
latents.shape, latents_lr.shape,
unconditions, device=self.device, **extras.sampling_configs
)
else:
sampled_ema = sampled
sampled_ema_lr = sampled_lr
return sampled, sampled_lr
def main_worker(rank, cfg):
print("Launching Script in main worker")
warpcore = WurstCore(
config_file_path=cfg, rank=rank, world_size = get_world_size()
)
# core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
# RUN TRAINING
warpcore(get_world_size()==1)
if __name__ == '__main__':
print('launch multi process')
# os.environ["OMP_NUM_THREADS"] = "1"
# os.environ["MKL_NUM_THREADS"] = "1"
#dist.init_process_group(backend="nccl")
#torch.backends.cudnn.benchmark = True
#train/train_c_my.py
#mp.set_sharing_strategy('file_system')
if get_master_ip() == "127.0.0.1":
# manually launch distributed processes
mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, ))
else:
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )