augray
dynamic render
a46b4c4
raw
history blame
6.95 kB
import json
import logging
import os
import urllib.parse
from typing import Any
import gradio as gr
import requests
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub.repocard import CardData, RepoCard
logger = logging.getLogger(__name__)
example = HuggingfaceHubSearch().example_value()
def get_iframe(hub_repo_id, sql_query=None):
if not hub_repo_id:
raise ValueError("Hub repo id is required")
if sql_query:
sql_query = urllib.parse.quote(sql_query)
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer?sql_console=true&sql={sql_query}"
else:
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
iframe = f"""
<iframe
src="{url}"
frameborder="0"
width="100%"
height="800px"
></iframe>
"""
return iframe
def get_table_info(hub_repo_id):
url: str = f"https://datasets-server.huggingface.co/info?dataset={hub_repo_id}"
response = requests.get(url)
try:
data = response.json()
data = data.get("dataset_info")
return json.dumps(data)
except Exception as e:
gr.Error(f"Error getting column info: {e}")
def get_table_name(config: str | None, split: str | None, config_choices: list[str], split_choices: list[str]):
if len(config_choices) > 0 and config is None:
config = config_choices[0]
if len(split_choices) > 0 and split is None:
split = split_choices[0]
if len(config_choices) > 1 and len(split_choices) > 1:
base_name = f"{config}_{split}"
elif len(config_choices) >= 1 and len(split_choices) <= 1:
base_name = config
else:
base_name = split
def replace_char(c):
if c.isalnum():
return c
if c in ["-", "_", "/"]:
return "_"
return ""
table_name = "".join(
replace_char(c) for c in base_name
)
if table_name[0].isdigit():
table_name = f"_{table_name}"
return table_name.lower()
def get_prompt_messages(card_data: dict[str, Any], natural_language_query: str):
config_choices = get_config_choices(card_data)
split_choices = get_split_choices(card_data)
chosen_config = config_choices[0] if len(config_choices) > 0 else None
chosen_split = split_choices[0] if len(split_choices) > 0 else None
table_name = get_table_name(chosen_config, chosen_split, config_choices, split_choices)
features = card_data[chosen_config]["features"]
messages = [
{
"role": "system",
"content": "You are a SQL query expert assistant that returns a DuckDB SQL queries based on the user's natural language query and dataset features. You might need to use DuckDB functions for lists and aggregations, given the features. Only return the SQL query, no other text.",
},
{
"role": "user",
"content": f"""table {table_name}
# Features
{features}
# Query
{natural_language_query}
""",
},
]
return messages
def get_config_choices(card_data: dict[str, Any]) -> list[str]:
return list(card_data.keys())
def get_split_choices(card_data: dict[str, Any]) -> list[str]:
splits = set()
for config in card_data.values():
splits.update(config.get("splits", {}).keys())
return list(splits)
def query_dataset(hub_repo_id, card_data, query):
card_data = json.loads(card_data)
messages = get_prompt_messages(card_data, query)
api_key = os.environ["API_KEY_TOGETHER_AI"].strip()
response = requests.post(
"https://api.together.xyz/v1/chat/completions",
json=dict(
model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
messages=messages,
max_tokens=1000,
),
headers={"Authorization": f"Bearer {api_key}"},
)
if response.status_code != 200:
logger.warning(response.text)
try:
response.raise_for_status()
except Exception as e:
gr.Error(f"Could not query LLM for suggestion: {e}")
response_dict = response.json()
duck_query = response_dict["choices"][0]["message"]["content"]
duck_query = _sanitize_duck_query(duck_query)
return duck_query, get_iframe(hub_repo_id, duck_query)
def _sanitize_duck_query(duck_query: str) -> str:
# Sometimes the LLM wraps the query like this:
# ```sql
# select * from x;
# ```
# This removes that wrapping if present.
if "```" not in duck_query:
return duck_query
start_idx = duck_query.index("```") + len("```")
end_idx = duck_query.rindex("```")
duck_query = duck_query[start_idx:end_idx]
if duck_query.startswith("sql\n"):
duck_query = duck_query.replace("sql\n", "", 1)
return duck_query
with gr.Blocks() as demo:
gr.Markdown("""# πŸ₯ πŸ¦™ πŸ€— Text To SQL Hub Datasets πŸ€— πŸ¦™ πŸ₯
This is a basic text to SQL tool that allows you to query datasets on Huggingface Hub.
It is built with [DuckDB](https://duckdb.org/), [Huggingface's Inference API](https://huggingface.co/docs/api-inference/index), and [LLama 3.1 70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
Also, it uses the [dataset-server API](https://redocly.github.io/redoc/?url=https://datasets-server.huggingface.co/openapi.json#operation/isValidDataset).
""")
with gr.Row():
search_in = HuggingfaceHubSearch(
label="Search Huggingface Hub",
placeholder="Search for models on Huggingface",
search_type="dataset",
sumbit_on_select=True,
)
with gr.Row():
query = gr.Textbox(
label="Natural Language Query",
placeholder="Enter a natural language query to generate SQL",
)
sql_out = gr.Code(
label="DuckDB SQL Query",
interactive=True,
language="sql",
lines=1,
visible=False,
)
@gr.render(triggers=[search_in.submit])
def show_config_split_choices():
with gr.Row():
with gr.Column():
btn = gr.Button("Show Dataset")
with gr.Column():
btn2 = gr.Button("Query Dataset")
with gr.Row():
search_out = gr.HTML(label="Search Results")
with gr.Row():
card_data = gr.Code(label="Card data", language="json", visible=False)
gr.on(
[btn.click, search_in.submit],
fn=get_iframe,
inputs=[search_in],
outputs=[search_out],
).then(
fn=get_table_info,
inputs=[search_in],
outputs=[card_data],
)
gr.on(
[btn2.click, query.submit],
fn=query_dataset,
inputs=[search_in, card_data, query],
outputs=[sql_out, search_out],
)
if __name__ == "__main__":
demo.launch()