Spaces:
Runtime error
Runtime error
# CamemBERT: a Tasty French Language Model | |
## Introduction | |
[CamemBERT](https://arxiv.org/abs/1911.03894) is a pretrained language model trained on 138GB of French text based on RoBERTa. | |
Also available in [github.com/huggingface/transformers](https://github.com/huggingface/transformers/). | |
## Pre-trained models | |
| Model | #params | Download | Arch. | Training data | | |
|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------| | |
| `camembert` / `camembert-base` | 110M | [camembert-base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz) | Base | OSCAR (138 GB of text) | | |
| `camembert-large` | 335M | [camembert-large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-large.tar.gz) | Large | CCNet (135 GB of text) | | |
| `camembert-base-ccnet` | 110M | [camembert-base-ccnet.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet.tar.gz) | Base | CCNet (135 GB of text) | | |
| `camembert-base-wikipedia-4gb` | 110M | [camembert-base-wikipedia-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-wikipedia-4gb.tar.gz) | Base | Wikipedia (4 GB of text) | | |
| `camembert-base-oscar-4gb` | 110M | [camembert-base-oscar-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-oscar-4gb.tar.gz) | Base | Subsample of OSCAR (4 GB of text) | | |
| `camembert-base-ccnet-4gb` | 110M | [camembert-base-ccnet-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet-4gb.tar.gz) | Base | Subsample of CCNet (4 GB of text) | | |
## Example usage | |
### fairseq | |
##### Load CamemBERT from torch.hub (PyTorch >= 1.1): | |
```python | |
import torch | |
camembert = torch.hub.load('pytorch/fairseq', 'camembert') | |
camembert.eval() # disable dropout (or leave in train mode to finetune) | |
``` | |
##### Load CamemBERT (for PyTorch 1.0 or custom models): | |
```python | |
# Download camembert model | |
wget https://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz | |
tar -xzvf camembert.tar.gz | |
# Load the model in fairseq | |
from fairseq.models.roberta import CamembertModel | |
camembert = CamembertModel.from_pretrained('/path/to/camembert') | |
camembert.eval() # disable dropout (or leave in train mode to finetune) | |
``` | |
##### Filling masks: | |
```python | |
masked_line = 'Le camembert est <mask> :)' | |
camembert.fill_mask(masked_line, topk=3) | |
# [('Le camembert est délicieux :)', 0.4909118115901947, ' délicieux'), | |
# ('Le camembert est excellent :)', 0.10556942224502563, ' excellent'), | |
# ('Le camembert est succulent :)', 0.03453322499990463, ' succulent')] | |
``` | |
##### Extract features from Camembert: | |
```python | |
# Extract the last layer's features | |
line = "J'aime le camembert !" | |
tokens = camembert.encode(line) | |
last_layer_features = camembert.extract_features(tokens) | |
assert last_layer_features.size() == torch.Size([1, 10, 768]) | |
# Extract all layer's features (layer 0 is the embedding layer) | |
all_layers = camembert.extract_features(tokens, return_all_hiddens=True) | |
assert len(all_layers) == 13 | |
assert torch.all(all_layers[-1] == last_layer_features) | |
``` | |
## Citation | |
If you use our work, please cite: | |
```bibtex | |
@inproceedings{martin2020camembert, | |
title={CamemBERT: a Tasty French Language Model}, | |
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, | |
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, | |
year={2020} | |
} | |
``` | |