Spaces:
Runtime error
Runtime error
# Finetuning RoBERTa on Winograd Schema Challenge (WSC) data | |
The following instructions can be used to finetune RoBERTa on the WSC training | |
data provided by [SuperGLUE](https://super.gluebenchmark.com/). | |
Note that there is high variance in the results. For our GLUE/SuperGLUE | |
submission we swept over the learning rate (1e-5, 2e-5, 3e-5), batch size (16, | |
32, 64) and total number of updates (500, 1000, 2000, 3000), as well as the | |
random seed. Out of ~100 runs we chose the best 7 models and ensembled them. | |
**Approach:** The instructions below use a slightly different loss function than | |
what's described in the original RoBERTa arXiv paper. In particular, | |
[Kocijan et al. (2019)](https://arxiv.org/abs/1905.06290) introduce a margin | |
ranking loss between `(query, candidate)` pairs with tunable hyperparameters | |
alpha and beta. This is supported in our code as well with the `--wsc-alpha` and | |
`--wsc-beta` arguments. However, we achieved slightly better (and more robust) | |
results on the development set by instead using a single cross entropy loss term | |
over the log-probabilities for the query and all mined candidates. **The | |
candidates are mined using spaCy from each input sentence in isolation, so the | |
approach remains strictly pointwise.** This reduces the number of | |
hyperparameters and our best model achieved 92.3% development set accuracy, | |
compared to ~90% accuracy for the margin loss. Later versions of the RoBERTa | |
arXiv paper will describe this updated formulation. | |
### 1) Download the WSC data from the SuperGLUE website: | |
```bash | |
wget https://dl.fbaipublicfiles.com/glue/superglue/data/v2/WSC.zip | |
unzip WSC.zip | |
# we also need to copy the RoBERTa dictionary into the same directory | |
wget -O WSC/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt | |
``` | |
### 2) Finetune over the provided training data: | |
```bash | |
TOTAL_NUM_UPDATES=2000 # Total number of training steps. | |
WARMUP_UPDATES=250 # Linearly increase LR over this many steps. | |
LR=2e-05 # Peak LR for polynomial LR scheduler. | |
MAX_SENTENCES=16 # Batch size per GPU. | |
SEED=1 # Random seed. | |
ROBERTA_PATH=/path/to/roberta/model.pt | |
# we use the --user-dir option to load the task and criterion | |
# from the examples/roberta/wsc directory: | |
FAIRSEQ_PATH=/path/to/fairseq | |
FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/wsc | |
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train WSC/ \ | |
--restore-file $ROBERTA_PATH \ | |
--reset-optimizer --reset-dataloader --reset-meters \ | |
--no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \ | |
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ | |
--valid-subset val \ | |
--fp16 --ddp-backend legacy_ddp \ | |
--user-dir $FAIRSEQ_USER_DIR \ | |
--task wsc --criterion wsc --wsc-cross-entropy \ | |
--arch roberta_large --bpe gpt2 --max-positions 512 \ | |
--dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \ | |
--lr-scheduler polynomial_decay --lr $LR \ | |
--warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_NUM_UPDATES \ | |
--batch-size $MAX_SENTENCES \ | |
--max-update $TOTAL_NUM_UPDATES \ | |
--log-format simple --log-interval 100 \ | |
--seed $SEED | |
``` | |
The above command assumes training on 4 GPUs, but you can achieve the same | |
results on a single GPU by adding `--update-freq=4`. | |
### 3) Evaluate | |
```python | |
from fairseq.models.roberta import RobertaModel | |
from examples.roberta.wsc import wsc_utils # also loads WSC task and criterion | |
roberta = RobertaModel.from_pretrained('checkpoints', 'checkpoint_best.pt', 'WSC/') | |
roberta.cuda() | |
nsamples, ncorrect = 0, 0 | |
for sentence, label in wsc_utils.jsonl_iterator('WSC/val.jsonl', eval=True): | |
pred = roberta.disambiguate_pronoun(sentence) | |
nsamples += 1 | |
if pred == label: | |
ncorrect += 1 | |
print('Accuracy: ' + str(ncorrect / float(nsamples))) | |
# Accuracy: 0.9230769230769231 | |
``` | |
## RoBERTa training on WinoGrande dataset | |
We have also provided `winogrande` task and criterion for finetuning on the | |
[WinoGrande](https://mosaic.allenai.org/projects/winogrande) like datasets | |
where there are always two candidates and one is correct. | |
It's more efficient implementation for such subcases. | |
```bash | |
TOTAL_NUM_UPDATES=23750 # Total number of training steps. | |
WARMUP_UPDATES=2375 # Linearly increase LR over this many steps. | |
LR=1e-05 # Peak LR for polynomial LR scheduler. | |
MAX_SENTENCES=32 # Batch size per GPU. | |
SEED=1 # Random seed. | |
ROBERTA_PATH=/path/to/roberta/model.pt | |
# we use the --user-dir option to load the task and criterion | |
# from the examples/roberta/wsc directory: | |
FAIRSEQ_PATH=/path/to/fairseq | |
FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/wsc | |
cd fairseq | |
CUDA_VISIBLE_DEVICES=0 fairseq-train winogrande_1.0/ \ | |
--restore-file $ROBERTA_PATH \ | |
--reset-optimizer --reset-dataloader --reset-meters \ | |
--no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \ | |
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ | |
--valid-subset val \ | |
--fp16 --ddp-backend legacy_ddp \ | |
--user-dir $FAIRSEQ_USER_DIR \ | |
--task winogrande --criterion winogrande \ | |
--wsc-margin-alpha 5.0 --wsc-margin-beta 0.4 \ | |
--arch roberta_large --bpe gpt2 --max-positions 512 \ | |
--dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \ | |
--lr-scheduler polynomial_decay --lr $LR \ | |
--warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_NUM_UPDATES \ | |
--batch-size $MAX_SENTENCES \ | |
--max-update $TOTAL_NUM_UPDATES \ | |
--log-format simple --log-interval 100 | |
``` | |