File size: 12,553 Bytes
159f437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (c) Facebook, Inc. and its affiliates. 
import torch
import torch.nn.functional as F
from torch import nn
import math

from detectron2.modeling import META_ARCH_REGISTRY, build_backbone
from detectron2.structures import Boxes, Instances
from ..utils import load_class_freq, get_fed_loss_inds

from models.backbone import Joiner
from models.deformable_detr import DeformableDETR, SetCriterion, MLP
from models.deformable_detr import _get_clones
from models.matcher import HungarianMatcher
from models.position_encoding import PositionEmbeddingSine
from models.deformable_transformer import DeformableTransformer
from models.segmentation import sigmoid_focal_loss
from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from util.misc import NestedTensor, accuracy


__all__ = ["DeformableDetr"]

class CustomSetCriterion(SetCriterion):
    def __init__(self, num_classes, matcher, weight_dict, losses, \
        focal_alpha=0.25, use_fed_loss=False):
        super().__init__(num_classes, matcher, weight_dict, losses, focal_alpha)
        self.use_fed_loss = use_fed_loss
        if self.use_fed_loss:
            self.register_buffer(
                'fed_loss_weight', load_class_freq(freq_weight=0.5))

    def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        target_classes_onehot = torch.zeros(
            [src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1],
            dtype=src_logits.dtype, layout=src_logits.layout, 
            device=src_logits.device)
        target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)

        target_classes_onehot = target_classes_onehot[:,:,:-1] # B x N x C
        if self.use_fed_loss:
            inds = get_fed_loss_inds(
                gt_classes=target_classes_o,
                num_sample_cats=50,
                weight=self.fed_loss_weight,
                C=target_classes_onehot.shape[2])
            loss_ce = sigmoid_focal_loss(
                src_logits[:, :, inds], 
                target_classes_onehot[:, :, inds], 
                num_boxes, 
                alpha=self.focal_alpha, 
                gamma=2) * src_logits.shape[1]
        else:
            loss_ce = sigmoid_focal_loss(
                src_logits, target_classes_onehot, num_boxes, 
                alpha=self.focal_alpha, 
                gamma=2) * src_logits.shape[1]
        losses = {'loss_ce': loss_ce}

        if log:
            # TODO this should probably be a separate loss, not hacked in this one here
            losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
        return losses


class MaskedBackbone(nn.Module):
    """ This is a thin wrapper around D2's backbone to provide padding masking"""

    def __init__(self, cfg):
        super().__init__()
        self.backbone = build_backbone(cfg)
        backbone_shape = self.backbone.output_shape()
        self.feature_strides = [backbone_shape[f].stride for f in backbone_shape.keys()]
        self.strides = [backbone_shape[f].stride for f in backbone_shape.keys()]
        self.num_channels = [backbone_shape[x].channels for x in backbone_shape.keys()]

    def forward(self, tensor_list: NestedTensor):
        xs = self.backbone(tensor_list.tensors)
        out = {}
        for name, x in xs.items():
            m = tensor_list.mask
            assert m is not None
            mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
            out[name] = NestedTensor(x, mask)
        return out

@META_ARCH_REGISTRY.register()
class DeformableDetr(nn.Module):
    """
    Implement Deformable Detr
    """

    def __init__(self, cfg):
        super().__init__()
        self.with_image_labels = cfg.WITH_IMAGE_LABELS
        self.weak_weight = cfg.MODEL.DETR.WEAK_WEIGHT

        self.device = torch.device(cfg.MODEL.DEVICE)
        self.test_topk = cfg.TEST.DETECTIONS_PER_IMAGE
        self.num_classes = cfg.MODEL.DETR.NUM_CLASSES
        self.mask_on = cfg.MODEL.MASK_ON
        hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM
        num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES

        # Transformer parameters:
        nheads = cfg.MODEL.DETR.NHEADS
        dropout = cfg.MODEL.DETR.DROPOUT
        dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD
        enc_layers = cfg.MODEL.DETR.ENC_LAYERS
        dec_layers = cfg.MODEL.DETR.DEC_LAYERS
        num_feature_levels = cfg.MODEL.DETR.NUM_FEATURE_LEVELS
        two_stage = cfg.MODEL.DETR.TWO_STAGE
        with_box_refine = cfg.MODEL.DETR.WITH_BOX_REFINE

        # Loss parameters:
        giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT
        l1_weight = cfg.MODEL.DETR.L1_WEIGHT
        deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION
        cls_weight = cfg.MODEL.DETR.CLS_WEIGHT
        focal_alpha = cfg.MODEL.DETR.FOCAL_ALPHA

        N_steps = hidden_dim // 2
        d2_backbone = MaskedBackbone(cfg)
        backbone = Joiner(d2_backbone, PositionEmbeddingSine(N_steps, normalize=True))

        transformer = DeformableTransformer(
            d_model=hidden_dim,
            nhead=nheads,
            num_encoder_layers=enc_layers,
            num_decoder_layers=dec_layers,
            dim_feedforward=dim_feedforward,
            dropout=dropout,
            activation="relu",
            return_intermediate_dec=True,
            num_feature_levels=num_feature_levels,
            dec_n_points=4,
            enc_n_points=4,
            two_stage=two_stage,
            two_stage_num_proposals=num_queries)

        self.detr = DeformableDETR(
            backbone, transformer, num_classes=self.num_classes, 
            num_queries=num_queries,
            num_feature_levels=num_feature_levels,
            aux_loss=deep_supervision,
            with_box_refine=with_box_refine,
            two_stage=two_stage,
        )

        if self.mask_on:
            assert 0, 'Mask is not supported yet :('

        matcher = HungarianMatcher(
            cost_class=cls_weight, cost_bbox=l1_weight, cost_giou=giou_weight)
        weight_dict = {"loss_ce": cls_weight, "loss_bbox": l1_weight}
        weight_dict["loss_giou"] = giou_weight
        if deep_supervision:
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)
        print('weight_dict', weight_dict)
        losses = ["labels", "boxes", "cardinality"]
        if self.mask_on:
            losses += ["masks"]
        self.criterion = CustomSetCriterion(
            self.num_classes, matcher=matcher, weight_dict=weight_dict, 
            focal_alpha=focal_alpha, 
            losses=losses,
            use_fed_loss=cfg.MODEL.DETR.USE_FED_LOSS
        )
        pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(3, 1, 1)
        pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(3, 1, 1)
        self.normalizer = lambda x: (x - pixel_mean) / pixel_std


    def forward(self, batched_inputs):
        """
        Args:
        Returns:
            dict[str: Tensor]:
                mapping from a named loss to a tensor storing the loss. Used during training only.
        """
        images = self.preprocess_image(batched_inputs)
        output = self.detr(images)
        if self.training:
            gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
            targets = self.prepare_targets(gt_instances)
            loss_dict = self.criterion(output, targets)
            weight_dict = self.criterion.weight_dict
            for k in loss_dict.keys():
                if k in weight_dict:
                    loss_dict[k] *= weight_dict[k]
            if self.with_image_labels:
                if batched_inputs[0]['ann_type'] in ['image', 'captiontag']:
                    loss_dict['loss_image'] = self.weak_weight * self._weak_loss(
                        output, batched_inputs)
                else:
                    loss_dict['loss_image'] = images[0].new_zeros(
                        [1], dtype=torch.float32)[0]
                # import pdb; pdb.set_trace()
            return loss_dict
        else:
            image_sizes = output["pred_boxes"].new_tensor(
                [(t["height"], t["width"]) for t in batched_inputs])
            results = self.post_process(output, image_sizes)
            return results


    def prepare_targets(self, targets):
        new_targets = []
        for targets_per_image in targets:
            h, w = targets_per_image.image_size
            image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
            gt_classes = targets_per_image.gt_classes
            gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy
            gt_boxes = box_xyxy_to_cxcywh(gt_boxes)
            new_targets.append({"labels": gt_classes, "boxes": gt_boxes})
            if self.mask_on and hasattr(targets_per_image, 'gt_masks'):
                assert 0, 'Mask is not supported yet :('
                gt_masks = targets_per_image.gt_masks
                gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w)
                new_targets[-1].update({'masks': gt_masks})
        return new_targets


    def post_process(self, outputs, target_sizes):
        """
        """
        out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
        assert len(out_logits) == len(target_sizes)
        assert target_sizes.shape[1] == 2

        prob = out_logits.sigmoid()
        topk_values, topk_indexes = torch.topk(
            prob.view(out_logits.shape[0], -1), self.test_topk, dim=1)
        scores = topk_values
        topk_boxes = topk_indexes // out_logits.shape[2]
        labels = topk_indexes % out_logits.shape[2]
        boxes = box_cxcywh_to_xyxy(out_bbox)
        boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4))

        # and from relative [0, 1] to absolute [0, height] coordinates
        img_h, img_w = target_sizes.unbind(1)
        scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
        boxes = boxes * scale_fct[:, None, :]

        results = []
        for s, l, b, size in zip(scores, labels, boxes, target_sizes):
            r = Instances((size[0], size[1]))
            r.pred_boxes = Boxes(b)
            r.scores = s
            r.pred_classes = l
            results.append({'instances': r})
        return results


    def preprocess_image(self, batched_inputs):
        """
        Normalize, pad and batch the input images.
        """
        images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs]
        return images


    def _weak_loss(self, outputs, batched_inputs):
        loss = 0
        for b, x in enumerate(batched_inputs):
            labels = x['pos_category_ids']
            pred_logits = [outputs['pred_logits'][b]]
            pred_boxes = [outputs['pred_boxes'][b]]
            for xx in outputs['aux_outputs']:
                pred_logits.append(xx['pred_logits'][b])
                pred_boxes.append(xx['pred_boxes'][b])
            pred_logits = torch.stack(pred_logits, dim=0) # L x N x C
            pred_boxes = torch.stack(pred_boxes, dim=0) # L x N x 4
            for label in labels:
                loss += self._max_size_loss(
                    pred_logits, pred_boxes, label) / len(labels)
        loss = loss / len(batched_inputs)
        return loss


    def _max_size_loss(self, logits, boxes, label):
        '''
        Inputs:
          logits: L x N x C
          boxes: L x N x 4
        '''
        target = logits.new_zeros((logits.shape[0], logits.shape[2]))
        target[:, label] = 1.
        sizes = boxes[..., 2] * boxes[..., 3] # L x N
        ind = sizes.argmax(dim=1) # L
        loss = F.binary_cross_entropy_with_logits(
            logits[range(len(ind)), ind], target, reduction='sum')
        return loss