Spaces:
Runtime error
Runtime error
File size: 6,244 Bytes
159f437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from os.path import join
import numpy as np
import copy
from functools import partial
import torch
from torch import nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import fvcore.nn.weight_init as weight_init
from detectron2.modeling.backbone import FPN
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.layers.batch_norm import get_norm, FrozenBatchNorm2d
from detectron2.modeling.backbone import Backbone
from timm import create_model
from timm.models.helpers import build_model_with_cfg
from timm.models.registry import register_model
from timm.models.resnet import ResNet, Bottleneck
from timm.models.resnet import default_cfgs as default_cfgs_resnet
class CustomResNet(ResNet):
def __init__(self, **kwargs):
self.out_indices = kwargs.pop('out_indices')
super().__init__(**kwargs)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.maxpool(x)
ret = [x]
x = self.layer1(x)
ret.append(x)
x = self.layer2(x)
ret.append(x)
x = self.layer3(x)
ret.append(x)
x = self.layer4(x)
ret.append(x)
return [ret[i] for i in self.out_indices]
def load_pretrained(self, cached_file):
data = torch.load(cached_file, map_location='cpu')
if 'state_dict' in data:
self.load_state_dict(data['state_dict'])
else:
self.load_state_dict(data)
model_params = {
'resnet50': dict(block=Bottleneck, layers=[3, 4, 6, 3]),
'resnet50_in21k': dict(block=Bottleneck, layers=[3, 4, 6, 3]),
}
def create_timm_resnet(variant, out_indices, pretrained=False, **kwargs):
params = model_params[variant]
default_cfgs_resnet['resnet50_in21k'] = \
copy.deepcopy(default_cfgs_resnet['resnet50'])
default_cfgs_resnet['resnet50_in21k']['url'] = \
'https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/resnet50_miil_21k.pth'
default_cfgs_resnet['resnet50_in21k']['num_classes'] = 11221
return build_model_with_cfg(
CustomResNet, variant, pretrained,
default_cfg=default_cfgs_resnet[variant],
out_indices=out_indices,
pretrained_custom_load=True,
**params,
**kwargs)
class LastLevelP6P7_P5(nn.Module):
"""
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.num_levels = 2
self.in_feature = "p5"
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
weight_init.c2_xavier_fill(module)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(F.relu(p6))
return [p6, p7]
def freeze_module(x):
"""
"""
for p in x.parameters():
p.requires_grad = False
FrozenBatchNorm2d.convert_frozen_batchnorm(x)
return x
class TIMM(Backbone):
def __init__(self, base_name, out_levels, freeze_at=0, norm='FrozenBN'):
super().__init__()
out_indices = [x - 1 for x in out_levels]
if 'resnet' in base_name:
self.base = create_timm_resnet(
base_name, out_indices=out_indices,
pretrained=False)
elif 'eff' in base_name:
self.base = create_model(
base_name, features_only=True,
out_indices=out_indices, pretrained=True)
else:
assert 0, base_name
feature_info = [dict(num_chs=f['num_chs'], reduction=f['reduction']) \
for i, f in enumerate(self.base.feature_info)]
self._out_features = ['layer{}'.format(x) for x in out_levels]
self._out_feature_channels = {
'layer{}'.format(l): feature_info[l - 1]['num_chs'] for l in out_levels}
self._out_feature_strides = {
'layer{}'.format(l): feature_info[l - 1]['reduction'] for l in out_levels}
self._size_divisibility = max(self._out_feature_strides.values())
if 'resnet' in base_name:
self.freeze(freeze_at)
if norm == 'FrozenBN':
self = FrozenBatchNorm2d.convert_frozen_batchnorm(self)
def freeze(self, freeze_at=0):
"""
"""
if freeze_at >= 1:
print('Frezing', self.base.conv1)
self.base.conv1 = freeze_module(self.base.conv1)
if freeze_at >= 2:
print('Frezing', self.base.layer1)
self.base.layer1 = freeze_module(self.base.layer1)
def forward(self, x):
features = self.base(x)
ret = {k: v for k, v in zip(self._out_features, features)}
return ret
@property
def size_divisibility(self):
return self._size_divisibility
@BACKBONE_REGISTRY.register()
def build_timm_backbone(cfg, input_shape):
model = TIMM(
cfg.MODEL.TIMM.BASE_NAME,
cfg.MODEL.TIMM.OUT_LEVELS,
freeze_at=cfg.MODEL.TIMM.FREEZE_AT,
norm=cfg.MODEL.TIMM.NORM,
)
return model
@BACKBONE_REGISTRY.register()
def build_p67_timm_fpn_backbone(cfg, input_shape):
"""
"""
bottom_up = build_timm_backbone(cfg, input_shape)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=LastLevelP6P7_P5(out_channels, out_channels),
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone
@BACKBONE_REGISTRY.register()
def build_p35_timm_fpn_backbone(cfg, input_shape):
"""
"""
bottom_up = build_timm_backbone(cfg, input_shape)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=None,
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone |