Ahsen Khaliq
add files
16aee22
raw
history blame
6.07 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/sukjunhwang/IFC
import numpy as np
import logging
import sys
from fvcore.transforms.transform import (
HFlipTransform,
NoOpTransform,
VFlipTransform,
)
from PIL import Image
from detectron2.data import transforms as T
class ResizeShortestEdge(T.Augmentation):
"""
Scale the shorter edge to the given size, with a limit of `max_size` on the longer edge.
If `max_size` is reached, then downscale so that the longer edge does not exceed max_size.
"""
def __init__(
self, short_edge_length, max_size=sys.maxsize, sample_style="range", interp=Image.BILINEAR, clip_frame_cnt=1
):
"""
Args:
short_edge_length (list[int]): If ``sample_style=="range"``,
a [min, max] interval from which to sample the shortest edge length.
If ``sample_style=="choice"``, a list of shortest edge lengths to sample from.
max_size (int): maximum allowed longest edge length.
sample_style (str): either "range" or "choice".
"""
super().__init__()
assert sample_style in ["range", "choice", "range_by_clip", "choice_by_clip"], sample_style
self.is_range = ("range" in sample_style)
if isinstance(short_edge_length, int):
short_edge_length = (short_edge_length, short_edge_length)
if self.is_range:
assert len(short_edge_length) == 2, (
"short_edge_length must be two values using 'range' sample style."
f" Got {short_edge_length}!"
)
self._cnt = 0
self._init(locals())
def get_transform(self, image):
if self._cnt % self.clip_frame_cnt == 0:
if self.is_range:
self.size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
else:
self.size = np.random.choice(self.short_edge_length)
if self.size == 0:
return NoOpTransform()
self._cnt = 0 # avoiding overflow
self._cnt += 1
h, w = image.shape[:2]
scale = self.size * 1.0 / min(h, w)
if h < w:
newh, neww = self.size, scale * w
else:
newh, neww = scale * h, self.size
if max(newh, neww) > self.max_size:
scale = self.max_size * 1.0 / max(newh, neww)
newh = newh * scale
neww = neww * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return T.ResizeTransform(h, w, newh, neww, self.interp)
class RandomFlip(T.Augmentation):
"""
Flip the image horizontally or vertically with the given probability.
"""
def __init__(self, prob=0.5, *, horizontal=True, vertical=False, clip_frame_cnt=1):
"""
Args:
prob (float): probability of flip.
horizontal (boolean): whether to apply horizontal flipping
vertical (boolean): whether to apply vertical flipping
"""
super().__init__()
if horizontal and vertical:
raise ValueError("Cannot do both horiz and vert. Please use two Flip instead.")
if not horizontal and not vertical:
raise ValueError("At least one of horiz or vert has to be True!")
self._cnt = 0
self._init(locals())
def get_transform(self, image):
if self._cnt % self.clip_frame_cnt == 0:
self.do = self._rand_range() < self.prob
self._cnt = 0 # avoiding overflow
self._cnt += 1
h, w = image.shape[:2]
if self.do:
if self.horizontal:
return HFlipTransform(w)
elif self.vertical:
return VFlipTransform(h)
else:
return NoOpTransform()
def build_augmentation(cfg, is_train):
logger = logging.getLogger(__name__)
aug_list = []
if is_train:
# Crop
if cfg.INPUT.CROP.ENABLED:
aug_list.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE))
# Resize
min_size = cfg.INPUT.MIN_SIZE_TRAIN
max_size = cfg.INPUT.MAX_SIZE_TRAIN
sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
ms_clip_frame_cnt = cfg.INPUT.SAMPLING_FRAME_NUM if "by_clip" in cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else 1
aug_list.append(ResizeShortestEdge(min_size, max_size, sample_style, clip_frame_cnt=ms_clip_frame_cnt))
# Flip
if cfg.INPUT.RANDOM_FLIP != "none":
if cfg.INPUT.RANDOM_FLIP == "flip_by_clip":
flip_clip_frame_cnt = cfg.INPUT.SAMPLING_FRAME_NUM
else:
flip_clip_frame_cnt = 1
aug_list.append(
# NOTE using RandomFlip modified for the support of flip maintenance
RandomFlip(
horizontal=(cfg.INPUT.RANDOM_FLIP == "horizontal") or (cfg.INPUT.RANDOM_FLIP == "flip_by_clip"),
vertical=cfg.INPUT.RANDOM_FLIP == "vertical",
clip_frame_cnt=flip_clip_frame_cnt,
)
)
# Additional augmentations : brightness, contrast, saturation, rotation
augmentations = cfg.INPUT.AUGMENTATIONS
if "brightness" in augmentations:
aug_list.append(T.RandomBrightness(0.9, 1.1))
if "contrast" in augmentations:
aug_list.append(T.RandomContrast(0.9, 1.1))
if "saturation" in augmentations:
aug_list.append(T.RandomSaturation(0.9, 1.1))
if "rotation" in augmentations:
aug_list.append(
T.RandomRotation(
[-15, 15], expand=False, center=[(0.4, 0.4), (0.6, 0.6)], sample_style="range"
)
)
else:
# Resize
min_size = cfg.INPUT.MIN_SIZE_TEST
max_size = cfg.INPUT.MAX_SIZE_TEST
sample_style = "choice"
aug_list.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
return aug_list