Mask2Former / tools /analyze_model.py
Ahsen Khaliq
add files
16aee22
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detectron2/blob/main/tools/analyze_model.py
import logging
import numpy as np
from collections import Counter
import tqdm
from fvcore.nn import flop_count_table # can also try flop_count_str
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import CfgNode, LazyConfig, get_cfg, instantiate
from detectron2.data import build_detection_test_loader
from detectron2.engine import default_argument_parser
from detectron2.modeling import build_model
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.utils.analysis import (
FlopCountAnalysis,
activation_count_operators,
parameter_count_table,
)
from detectron2.utils.logger import setup_logger
# fmt: off
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
# fmt: on
from mask2former import add_maskformer2_config
logger = logging.getLogger("detectron2")
def setup(args):
if args.config_file.endswith(".yaml"):
cfg = get_cfg()
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.DATALOADER.NUM_WORKERS = 0
cfg.merge_from_list(args.opts)
cfg.freeze()
else:
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
setup_logger(name="fvcore")
setup_logger()
return cfg
def do_flop(cfg):
if isinstance(cfg, CfgNode):
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
model = build_model(cfg)
DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
else:
data_loader = instantiate(cfg.dataloader.test)
model = instantiate(cfg.model)
model.to(cfg.train.device)
DetectionCheckpointer(model).load(cfg.train.init_checkpoint)
model.eval()
counts = Counter()
total_flops = []
for idx, data in zip(tqdm.trange(args.num_inputs), data_loader): # noqa
if args.use_fixed_input_size and isinstance(cfg, CfgNode):
import torch
crop_size = cfg.INPUT.CROP.SIZE[0]
data[0]["image"] = torch.zeros((3, crop_size, crop_size))
flops = FlopCountAnalysis(model, data)
if idx > 0:
flops.unsupported_ops_warnings(False).uncalled_modules_warnings(False)
counts += flops.by_operator()
total_flops.append(flops.total())
logger.info("Flops table computed from only one input sample:\n" + flop_count_table(flops))
logger.info(
"Average GFlops for each type of operators:\n"
+ str([(k, v / (idx + 1) / 1e9) for k, v in counts.items()])
)
logger.info(
"Total GFlops: {:.1f}±{:.1f}".format(np.mean(total_flops) / 1e9, np.std(total_flops) / 1e9)
)
def do_activation(cfg):
if isinstance(cfg, CfgNode):
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
model = build_model(cfg)
DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
else:
data_loader = instantiate(cfg.dataloader.test)
model = instantiate(cfg.model)
model.to(cfg.train.device)
DetectionCheckpointer(model).load(cfg.train.init_checkpoint)
model.eval()
counts = Counter()
total_activations = []
for idx, data in zip(tqdm.trange(args.num_inputs), data_loader): # noqa
count = activation_count_operators(model, data)
counts += count
total_activations.append(sum(count.values()))
logger.info(
"(Million) Activations for Each Type of Operators:\n"
+ str([(k, v / idx) for k, v in counts.items()])
)
logger.info(
"Total (Million) Activations: {}±{}".format(
np.mean(total_activations), np.std(total_activations)
)
)
def do_parameter(cfg):
if isinstance(cfg, CfgNode):
model = build_model(cfg)
else:
model = instantiate(cfg.model)
logger.info("Parameter Count:\n" + parameter_count_table(model, max_depth=5))
def do_structure(cfg):
if isinstance(cfg, CfgNode):
model = build_model(cfg)
else:
model = instantiate(cfg.model)
logger.info("Model Structure:\n" + str(model))
if __name__ == "__main__":
parser = default_argument_parser(
epilog="""
Examples:
To show parameters of a model:
$ ./analyze_model.py --tasks parameter \\
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
Flops and activations are data-dependent, therefore inputs and model weights
are needed to count them:
$ ./analyze_model.py --num-inputs 100 --tasks flop \\
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \\
MODEL.WEIGHTS /path/to/model.pkl
"""
)
parser.add_argument(
"--tasks",
choices=["flop", "activation", "parameter", "structure"],
required=True,
nargs="+",
)
parser.add_argument(
"-n",
"--num-inputs",
default=100,
type=int,
help="number of inputs used to compute statistics for flops/activations, "
"both are data dependent.",
)
parser.add_argument(
"--use-fixed-input-size",
action="store_true",
help="use fixed input size when calculating flops",
)
args = parser.parse_args()
assert not args.eval_only
assert args.num_gpus == 1
cfg = setup(args)
for task in args.tasks:
{
"flop": do_flop,
"activation": do_activation,
"parameter": do_parameter,
"structure": do_structure,
}[task](cfg)