akhaliq's picture
akhaliq HF staff
Update app.py
e27f5f8 verified
raw
history blame
6.36 kB
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import tempfile
import openai
import time
from dataclasses import dataclass, field
from threading import Lock
import base64
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
conversation: list = field(default_factory=list)
client: openai.OpenAI = None
output_format: str = "mp3"
stopped: bool = False
# Global lock for thread safety
state_lock = Lock()
def create_client(api_key):
return openai.OpenAI(
base_url="https://llama3-1-8b.lepton.run/api/v1/",
api_key=api_key
)
def determine_pause(audio, sampling_rate, state):
# Take the last 1 second of audio
pause_length = int(sampling_rate * 1) # 1 second
if len(audio) < pause_length:
return False
last_audio = audio[-pause_length:]
amplitude = np.abs(last_audio)
# Calculate the average amplitude in the last 1 second
avg_amplitude = np.mean(amplitude)
silence_threshold = 0.01 # Adjust this threshold as needed
if avg_amplitude < silence_threshold:
return True
else:
return False
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected:
return gr.update(recording=False), state
else:
return None, state
def generate_response_and_audio(audio_bytes: bytes, state: AppState):
if state.client is None:
raise gr.Error("Please enter a valid API key first.")
format_ = state.output_format
bitrate = 128 if format_ == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS
audio_data = base64.b64encode(audio_bytes).decode()
try:
stream = state.client.chat.completions.create(
extra_body={
"require_audio": True,
"tts_preset_id": "jessica",
"tts_audio_format": format_,
"tts_audio_bitrate": bitrate
},
model="llama3.1-8b",
messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
temperature=0.7,
max_tokens=256,
stream=True,
)
for chunk in stream:
if not chunk.choices:
continue
content = chunk.choices[0].delta.content
audio = getattr(chunk.choices[0], 'audio', [])
if content or audio:
audio_bytes = b''.join([base64.b64decode(a) for a in audio]) if audio else None
yield content, audio_bytes, state
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def response(state: AppState):
if state.stream is None or len(state.stream) == 0:
yield None, None, state
return
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), state)
# Add the user's audio input to the conversation
state.conversation.append({"role": "user", "content": "Audio input"})
# Prepare assistant's message
assistant_message = {"role": "assistant", "content": ""}
state.conversation.append(assistant_message)
for text, audio, updated_state in generator:
if text:
assistant_message["content"] += text
state = updated_state
chatbot_output = state.conversation[-2:] # Get the last two messages
yield chatbot_output, audio, state
# Reset the audio stream for the next interaction
state.stream = None
state.pause_detected = False
def start_recording_user(state: AppState):
if not state.stopped:
return gr.update(recording=True)
else:
return gr.update(recording=False)
def set_api_key(api_key, state):
if not api_key:
raise gr.Error("Please enter a valid API key.")
state.client = create_client(api_key)
return "API key set successfully!", state
def update_format(format, state):
state.output_format = format
return state
with gr.Blocks() as demo:
with gr.Row():
api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
set_key_button = gr.Button("Set API Key")
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
with gr.Row():
format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Input Audio", source="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Conversation", type="messages")
output_audio = gr.Audio(label="Output Audio", autoplay=True)
state = gr.State(AppState())
set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state])
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.25, # Reduced to make it more responsive
time_limit=60, # Increased to allow for longer messages
)
respond = input_audio.stop_recording(
response,
[state],
[chatbot, output_audio, state],
)
# Automatically restart recording after the assistant's response
restart = output_audio.change(
start_recording_user,
[state],
[input_audio]
)
# Add a "Stop Conversation" button
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(lambda: (AppState(stopped=True), gr.update(recording=False)), None,
[state, input_audio], cancels=[respond, restart])
demo.launch(queue=True, stream=True)