yolov7 / cfg /baseline /yolor-d6.yaml
akhaliq's picture
akhaliq HF staff
add files
e20a59b
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # expand model depth
width_multiple: 1.25 # expand layer channels
# anchors
anchors:
- [ 19,27, 44,40, 38,94 ] # P3/8
- [ 96,68, 86,152, 180,137 ] # P4/16
- [ 140,301, 303,264, 238,542 ] # P5/32
- [ 436,615, 739,380, 925,792 ] # P6/64
# CSP-Darknet backbone
backbone:
# [from, number, module, args]
[[-1, 1, ReOrg, []], # 0
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
[-1, 1, DownC, [128]], # 2-P2/4
[-1, 3, BottleneckCSPA, [128]],
[-1, 1, DownC, [256]], # 4-P3/8
[-1, 15, BottleneckCSPA, [256]],
[-1, 1, DownC, [512]], # 6-P4/16
[-1, 15, BottleneckCSPA, [512]],
[-1, 1, DownC, [768]], # 8-P5/32
[-1, 7, BottleneckCSPA, [768]],
[-1, 1, DownC, [1024]], # 10-P6/64
[-1, 7, BottleneckCSPA, [1024]], # 11
]
# CSP-Dark-PAN head
head:
[[-1, 1, SPPCSPC, [512]], # 12
[-1, 1, Conv, [384, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-6, 1, Conv, [384, 1, 1]], # route backbone P5
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSPB, [384]], # 17
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-13, 1, Conv, [256, 1, 1]], # route backbone P4
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSPB, [256]], # 22
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSPB, [128]], # 27
[-1, 1, Conv, [256, 3, 1]],
[-2, 1, DownC, [256]],
[[-1, 22], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSPB, [256]], # 31
[-1, 1, Conv, [512, 3, 1]],
[-2, 1, DownC, [384]],
[[-1, 17], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSPB, [384]], # 35
[-1, 1, Conv, [768, 3, 1]],
[-2, 1, DownC, [512]],
[[-1, 12], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSPB, [512]], # 39
[-1, 1, Conv, [1024, 3, 1]],
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
]