File size: 4,081 Bytes
b093688
c542962
 
 
 
 
 
 
b093688
c542962
1fedf30
c542962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b093688
c542962
 
 
 
b093688
 
 
 
 
 
1fedf30
c542962
 
1fedf30
c542962
 
 
 
 
 
 
 
 
 
 
1fedf30
c542962
 
b093688
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor
import streamlit as st
import os
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
import re

@st.cache_resource
def init_model():
    tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
    model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
    model = model.eval()
    return model, tokenizer

def init_gpu_model():
    tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
    model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
    model = model.eval().cuda()
    return model, tokenizer

def init_qwen_model():
    model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16)
    processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
    return model, processor

def get_quen_op(image_file, model, processor):
    try: 
        image = Image.open(image_file).convert('RGB')
        conversation = [
            {
                "role":"user",
                "content":[
                    {
                        "type":"image",
                    },
                    {
                        "type":"text",
                        "text":"Extract text from this image."
                    }
                ]
            }
        ]
        text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
        inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
        inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()}

        generation_config = {
            "max_new_tokens": 32,
            "do_sample": False,
            "top_k": 20,
            "top_p": 0.90,
            "temperature": 0.4,
            "num_return_sequences": 1,
            "pad_token_id": processor.tokenizer.pad_token_id,
            "eos_token_id": processor.tokenizer.eos_token_id,
        }

        output_ids = model.generate(**inputs, **generation_config)
        if 'input_ids' in inputs:
                generated_ids = output_ids[:, inputs['input_ids'].shape[1]:]
        else:
            generated_ids = output_ids
            
        output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
            
        return output_text[:] if output_text else "No text extracted from the image."
    
    except Exception as e:
        return f"An error occurred: {str(e)}"

# @st.cache_data
def get_text(image_file, model, tokenizer):
    res = model.chat(tokenizer, image_file, ocr_type='ocr')
    return res

def highlight_text(text, search_term):
    if not search_term:
        return text
    pattern = re.compile(re.escape(search_term), re.IGNORECASE)
    return pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', text)

st.title("Image - Text OCR (General OCR Theory - GOT)")
st.write("Upload an image for OCR")

MODEL, PROCESSOR = init_model()

image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])

if image_file:
    if not os.path.exists("images"):
        os.makedirs("images")
    with open(f"images/{image_file.name}", "wb") as f:
        f.write(image_file.getbuffer())

    image_file = f"images/{image_file.name}"

    text = get_text(image_file, MODEL, PROCESSOR)

    print(text)
    
    # Add search functionality
    search_term = st.text_input("Enter a word or phrase to search:")
    highlighted_text = highlight_text(text, search_term)
    
    st.markdown(highlighted_text, unsafe_allow_html=True)