File size: 40,035 Bytes
d37165a
37bad86
 
971afbd
 
 
dde56f0
 
 
 
 
 
 
 
 
 
 
bb3f4fa
b6fbf82
570e6d5
dde56f0
 
 
 
 
 
97f0f9a
f4f238a
dde56f0
 
 
 
 
d2993f4
 
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37165a
dde56f0
 
608ea30
4d12343
dde56f0
 
 
 
 
 
 
d37165a
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608ea30
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37165a
dde56f0
d37165a
dde56f0
d37165a
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2993f4
dde56f0
 
d2993f4
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
e65991c
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee2cd1
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
229621d
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7debea2
97f0f9a
 
c8eaa36
ca624a0
ec192d5
53a34c4
238988e
 
53a34c4
 
dde56f0
a4c401d
dde56f0
 
 
 
 
 
97f0f9a
 
 
c8eaa36
 
 
 
 
a4c401d
3d2cf31
64db3e2
3e750a2
229621d
 
 
 
 
a4c401d
dde56f0
 
 
229621d
 
 
dde56f0
5b91528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e65991c
5b91528
 
 
 
 
 
 
 
 
 
 
 
 
 
e65991c
5b91528
 
 
 
 
 
d4dd864
5b91528
 
d4dd864
ca643d4
5b91528
 
e65991c
5b91528
 
 
 
 
 
 
 
 
34172e3
5b91528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4dd864
5b91528
 
d4dd864
5b91528
ca643d4
5b91528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4dd864
5b91528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde56f0
 
 
d2993f4
dde56f0
11e40e8
dde56f0
 
 
11e40e8
dde56f0
3d2cf31
11e40e8
 
 
 
dde56f0
ad5199e
08f83a6
 
 
 
a13a624
 
 
 
 
 
 
 
 
7fb9720
 
 
08f83a6
 
ca624a0
dde56f0
5b91528
37bad86
5b91528
 
 
 
 
 
 
 
 
 
 
d4dd864
5b91528
 
 
 
 
 
 
d4dd864
5b91528
 
 
 
f0f0a6f
5b91528
 
d4dd864
37bad86
 
437aec6
 
c2a15c5
37bad86
 
 
 
 
 
 
9444bd9
 
37bad86
 
 
 
 
 
 
 
 
 
 
 
 
 
9444bd9
 
 
 
 
 
37bad86
 
5b91528
 
 
37bad86
 
 
 
 
 
 
 
 
5b91528
7b646c4
dde56f0
 
5fa2298
 
bfc98f5
238988e
 
 
ba9905a
 
5b91528
 
238988e
dde56f0
 
5b91528
 
 
 
 
6c5fffa
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
8f99b2d
 
dde56f0
 
 
 
 
 
 
 
 
238988e
ba9905a
238988e
dde56f0
238988e
dde56f0
 
 
b25c973
 
 
 
 
 
 
dde5c67
 
073aa1e
5b91528
544dd64
5b91528
 
 
 
f0f0a6f
dde5c67
e9f5d9e
073aa1e
2586962
 
 
 
 
 
 
dde56f0
 
 
dde5c67
dde56f0
f0f0a6f
dde56f0
734b43b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
import os
os.system('pip uninstall -y gradio')
os.system('pip install gradio==5.0.1')


import gradio as gr
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import torch
from torch.utils import data
from torch.utils.data import DataLoader, Dataset
from torch import nn, optim
from skimage.transform import rescale, resize
from torch import nn, optim
import torch.nn.functional as F
from torch.utils.data import Subset
from scipy.interpolate import interp1d
import collections
import numpy as np
import random

#for pvloop simulator:
import pandas as pd
from scipy.integrate import odeint 
import torchvision
import echonet
import matplotlib.animation as animation
from functools import partial

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

sequences_all = []
info_data_all = []
path = 'EchoNet-Dynamic'
output_path = ''

class Echo(torchvision.datasets.VisionDataset):
    """EchoNet-Dynamic Dataset.
    Args:
        root (string): Root directory of dataset (defaults to `echonet.config.DATA_DIR`)
        split (string): One of {``train'', ``val'', ``test'', ``all'', or ``external_test''}
        target_type (string or list, optional): Type of target to use,
            ``Filename'', ``EF'', ``EDV'', ``ESV'', ``LargeIndex'',
            ``SmallIndex'', ``LargeFrame'', ``SmallFrame'', ``LargeTrace'',
            or ``SmallTrace''
            Can also be a list to output a tuple with all specified target types.
            The targets represent:
                ``Filename'' (string): filename of video
                ``EF'' (float): ejection fraction
                ``EDV'' (float): end-diastolic volume
                ``ESV'' (float): end-systolic volume
                ``LargeIndex'' (int): index of large (diastolic) frame in video
                ``SmallIndex'' (int): index of small (systolic) frame in video
                ``LargeFrame'' (np.array shape=(3, height, width)): normalized large (diastolic) frame
                ``SmallFrame'' (np.array shape=(3, height, width)): normalized small (systolic) frame
                ``LargeTrace'' (np.array shape=(height, width)): left ventricle large (diastolic) segmentation
                    value of 0 indicates pixel is outside left ventricle
                             1 indicates pixel is inside left ventricle
                ``SmallTrace'' (np.array shape=(height, width)): left ventricle small (systolic) segmentation
                    value of 0 indicates pixel is outside left ventricle
                             1 indicates pixel is inside left ventricle
            Defaults to ``EF''.
        mean (int, float, or np.array shape=(3,), optional): means for all (if scalar) or each (if np.array) channel.
            Used for normalizing the video. Defaults to 0 (video is not shifted).
        std (int, float, or np.array shape=(3,), optional): standard deviation for all (if scalar) or each (if np.array) channel.
            Used for normalizing the video. Defaults to 0 (video is not scaled).
        length (int or None, optional): Number of frames to clip from video. If ``None'', longest possible clip is returned.
            Defaults to 16.
        period (int, optional): Sampling period for taking a clip from the video (i.e. every ``period''-th frame is taken)
            Defaults to 2.
        max_length (int or None, optional): Maximum number of frames to clip from video (main use is for shortening excessively
            long videos when ``length'' is set to None). If ``None'', shortening is not applied to any video.
            Defaults to 250.
        clips (int, optional): Number of clips to sample. Main use is for test-time augmentation with random clips.
            Defaults to 1.
        pad (int or None, optional): Number of pixels to pad all frames on each side (used as augmentation).
            and a window of the original size is taken. If ``None'', no padding occurs.
            Defaults to ``None''.
        noise (float or None, optional): Fraction of pixels to black out as simulated noise. If ``None'', no simulated noise is added.
            Defaults to ``None''.
        target_transform (callable, optional): A function/transform that takes in the target and transforms it.
        external_test_location (string): Path to videos to use for external testing.
    """

    def __init__(self, root=None,
                 split="train", target_type="EF",
                 mean=0., std=1.,
                 length=16, period=2,
                 max_length=250,
                 clips=1,
                 pad=None,
                 noise=None,
                 target_transform=None,
                 external_test_location=None):
        if root is None:
            root = path

        super().__init__(root, target_transform=target_transform)

        self.split = split.upper()
        if not isinstance(target_type, list):
            target_type = [target_type]
        self.target_type = target_type
        self.mean = mean
        self.std = std
        self.length = length
        self.max_length = max_length
        self.period = period
        self.clips = clips
        self.pad = pad
        self.noise = noise
        self.target_transform = target_transform
        self.external_test_location = external_test_location

        self.fnames, self.outcome = [], []

        if self.split == "EXTERNAL_TEST":
            self.fnames = sorted(os.listdir(self.external_test_location))
        else:
            # Load video-level labels
            with open(f"{self.root}/FileList.csv") as f:
                data = pd.read_csv(f)
            data["Split"].map(lambda x: x.upper())

            if self.split != "ALL":
                data = data[data["Split"] == self.split]

            self.header = data.columns.tolist()
            self.fnames = data["FileName"].tolist()
            self.fnames = [fn + ".avi" for fn in self.fnames if os.path.splitext(fn)[1] == ""]  # Assume avi if no suffix
            self.outcome = data.values.tolist()

            # Check that files are present
            """
            missing = set(self.fnames) - set(os.listdir(os.path.join(self.root, "Videos")))
            if len(missing) != 0:
                print("{} videos could not be found in {}:".format(len(missing), os.path.join(self.root, "Videos")))
                for f in sorted(missing):
                    print("\t", f)
                raise FileNotFoundError(os.path.join(self.root, "Videos", sorted(missing)[0]))
            """

            # Load traces
            self.frames = collections.defaultdict(list)
            self.trace = collections.defaultdict(_defaultdict_of_lists)

            with open(f"{self.root}/VolumeTracings.csv") as f:
                header = f.readline().strip().split(",")
                assert header == ["FileName", "X1", "Y1", "X2", "Y2", "Frame"]

                for line in f:
                    filename, x1, y1, x2, y2, frame = line.strip().split(',')
                    x1 = float(x1)
                    y1 = float(y1)
                    x2 = float(x2)
                    y2 = float(y2)
                    frame = int(frame)
                    if frame not in self.trace[filename]:
                        self.frames[filename].append(frame)
                    self.trace[filename][frame].append((x1, y1, x2, y2))
            for filename in self.frames:
                for frame in self.frames[filename]:
                    self.trace[filename][frame] = np.array(self.trace[filename][frame])

            # A small number of videos are missing traces; remove these videos
            keep = [len(self.frames[f]) >= 2 for f in self.fnames]
            self.fnames = [f for (f, k) in zip(self.fnames, keep) if k]
            self.outcome = [f for (f, k) in zip(self.outcome, keep) if k]

    def __getitem__(self, index):
        # Find filename of video
        if self.split == "EXTERNAL_TEST":
            video = os.path.join(self.external_test_location, self.fnames[index])
        elif self.split == "CLINICAL_TEST":
            video = os.path.join(self.root, "ProcessedStrainStudyA4c", self.fnames[index])
        else:
            video = os.path.join(self.root, "Videos", self.fnames[index])

        # Load video into np.array
        video = echonet.utils.loadvideo(video).astype(np.float32)

        # Add simulated noise (black out random pixels)
        # 0 represents black at this point (video has not been normalized yet)
        if self.noise is not None:
            n = video.shape[1] * video.shape[2] * video.shape[3]
            ind = np.random.choice(n, round(self.noise * n), replace=False)
            f = ind % video.shape[1]
            ind //= video.shape[1]
            i = ind % video.shape[2]
            ind //= video.shape[2]
            j = ind
            video[:, f, i, j] = 0

        # Apply normalization
        if isinstance(self.mean, (float, int)):
            video -= self.mean
        else:
            video -= self.mean.reshape(3, 1, 1, 1)

        if isinstance(self.std, (float, int)):
            video /= self.std
        else:
            video /= self.std.reshape(3, 1, 1, 1)

        # Set number of frames
        c, f, h, w = video.shape
        if self.length is None:
            # Take as many frames as possible
            length = f // self.period
        else:
            # Take specified number of frames
            length = self.length

        if self.max_length is not None:
            # Shorten videos to max_length
            length = min(length, self.max_length)

        if f < length * self.period:
            # Pad video with frames filled with zeros if too short
            # 0 represents the mean color (dark grey), since this is after normalization
            video = np.concatenate((video, np.zeros((c, length * self.period - f, h, w), video.dtype)), axis=1)
            c, f, h, w = video.shape  # pylint: disable=E0633

        if self.clips == "all":
            # Take all possible clips of desired length
            start = np.arange(f - (length - 1) * self.period)
        else:
            # Take random clips from video
            start = np.random.choice(f - (length - 1) * self.period, self.clips)

        # Gather targets
        target = []
        for t in self.target_type:
            key = self.fnames[index]
            if t == "Filename":
                target.append(self.fnames[index])
            elif t == "LargeIndex":
                # Traces are sorted by cross-sectional area
                # Largest (diastolic) frame is last
                target.append(int(self.frames[key][-1]))
            elif t == "SmallIndex":
                # Largest (diastolic) frame is first
                target.append(int(self.frames[key][0]))
            elif t == "LargeFrame":
                target.append(video[:, self.frames[key][-1], :, :])
            elif t == "SmallFrame":
                target.append(video[:, self.frames[key][0], :, :])
            elif t in ["LargeTrace", "SmallTrace"]:
                if t == "LargeTrace":
                    t = self.trace[key][self.frames[key][-1]]
                else:
                    t = self.trace[key][self.frames[key][0]]
                x1, y1, x2, y2 = t[:, 0], t[:, 1], t[:, 2], t[:, 3]
                x = np.concatenate((x1[1:], np.flip(x2[1:])))
                y = np.concatenate((y1[1:], np.flip(y2[1:])))

                r, c = skimage.draw.polygon(np.rint(y).astype(np.int), np.rint(x).astype(np.int), (video.shape[2], video.shape[3]))
                mask = np.zeros((video.shape[2], video.shape[3]), np.float32)
                mask[r, c] = 1
                target.append(mask)
            else:
                if self.split == "CLINICAL_TEST" or self.split == "EXTERNAL_TEST":
                    target.append(np.float32(0))
                else:
                    target.append(np.float32(self.outcome[index][self.header.index(t)]))

        if target != []:
            target = tuple(target) if len(target) > 1 else target[0]
            if self.target_transform is not None:
                target = self.target_transform(target)

        # Select clips from video
        video = tuple(video[:, s + self.period * np.arange(length), :, :] for s in start)
        if self.clips == 1:
            video = video[0]
        else:
            video = np.stack(video)

        if self.pad is not None:
            # Add padding of zeros (mean color of videos)
            # Crop of original size is taken out
            # (Used as augmentation)
            c, l, h, w = video.shape
            temp = np.zeros((c, l, h + 2 * self.pad, w + 2 * self.pad), dtype=video.dtype)
            temp[:, :, self.pad:-self.pad, self.pad:-self.pad] = video  # pylint: disable=E1130
            i, j = np.random.randint(0, 2 * self.pad, 2)
            video = temp[:, :, i:(i + h), j:(j + w)]

        return video, target

    def __len__(self):
        return len(self.fnames)

    def extra_repr(self) -> str:
        """Additional information to add at end of __repr__."""
        lines = ["Target type: {target_type}", "Split: {split}"]
        return '\n'.join(lines).format(**self.__dict__)


def _defaultdict_of_lists():
    """Returns a defaultdict of lists.
    This is used to avoid issues with Windows (if this function is anonymous,
    the Echo dataset cannot be used in a dataloader).
    """

    return collections.defaultdict(list)
## 
print("Done loading training data!")
# define normalization layer to make sure output xi in an interval [ai, bi]:
# define normalization layer to make sure output xi in an interval [ai, bi]:


class IntervalNormalizationLayer(torch.nn.Module):
    def __init__(self):
        super().__init__()
        # new_output = [Tc, start_p, Emax, Emin, Rm, Ra, Vd]
        self.a = torch.tensor([0.4, 0., 0.5, 0.02, 0.005, 0.0001, 4.], dtype=torch.float32) #HR in 20-200->Tc in [0.3, 4]
        self.b = torch.tensor([1.7, 280., 3.5, 0.1, 0.1, 0.25, 16.], dtype=torch.float32)
        #taken out (initial conditions): a: 20, 5, 50; b: 400, 20, 100
    def forward(self, inputs):
        sigmoid_output = torch.sigmoid(inputs)
        scaled_output = sigmoid_output * (self.b - self.a) + self.a
        return scaled_output

class NEW3DCNN(nn.Module):
    def __init__(self, num_parameters):
        super(NEW3DCNN, self).__init__()
        
        self.conv1      = nn.Conv3d(3, 8, kernel_size=3, padding=1)
        self.batchnorm1 = nn.BatchNorm3d(8)
        self.conv2      = nn.Conv3d(8, 16, kernel_size=3, padding=1)
        self.batchnorm2 = nn.BatchNorm3d(16)
        self.conv3      = nn.Conv3d(16, 32, kernel_size=3, padding=1)
        self.batchnorm3 = nn.BatchNorm3d(32)
        self.conv4      = nn.Conv3d(32, 64, kernel_size=3, padding=1)
        self.batchnorm4 = nn.BatchNorm3d(64)
        self.conv5      = nn.Conv3d(64, 128, kernel_size=3, padding=1)
        self.batchnorm5 = nn.BatchNorm3d(128)
        self.pool       = nn.AdaptiveAvgPool3d(1)
        self.fc1        = nn.Linear(128, 512)
        self.fc2        = nn.Linear(512, num_parameters)
        self.norm1      = IntervalNormalizationLayer()
        
    def forward(self, x):
        x = F.relu(self.batchnorm1(self.conv1(x)))
        x = F.max_pool3d(x, kernel_size=2, stride=2)
        x = F.relu(self.batchnorm2(self.conv2(x)))
        x = F.max_pool3d(x, kernel_size=2, stride=2)
        x = F.relu(self.batchnorm3(self.conv3(x)))
        x = F.max_pool3d(x, kernel_size=2, stride=2)
        x = F.relu(self.batchnorm4(self.conv4(x)))
        x = F.max_pool3d(x, kernel_size=2, stride=2)
        x = F.relu(self.batchnorm5(self.conv5(x)))
        x = self.pool(x)
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        x = self.norm1(x)

        return x


# Define a neural network with one hidden layer
class Interpolator(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(6, 250).double()
        self.fc2 = nn.Linear(250, 2).double()

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# Initialize the neural network
net = Interpolator()
net.load_state_dict(torch.load('final_model_weights/interp6_7param_weight.pt'))
print("Done loading interpolator!")

weights_path = 'final_model_weights/202_full_echonet_7param_Vloss_epoch_200_lr_0.001_weight_best_model.pt'
model = NEW3DCNN(num_parameters = 7)
model.load_state_dict(torch.load(weights_path))
model.to(device)

## PV loops

#returns Plv at time t using Elastance(t) and Vlv(t)-Vd=x1
def Plv(volume, Emax, Emin, t, Tc, Vd):
    return Elastance(Emax,Emin,t, Tc)*(volume - Vd)

#returns Elastance(t)
def Elastance(Emax,Emin, t, Tc):
    t = t-int(t/Tc)*Tc #can remove this if only want 1st ED (and the 1st ES before)
    tn = t/(0.2+0.15*Tc)
    return (Emax-Emin)*1.55*(tn/0.7)**1.9/((tn/0.7)**1.9+1.0)*1.0/((tn/1.17)**21.9+1.0) + Emin

def solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t):
    
    # the ODE from Simaan et al 2008
    def heart_ode(y, t, Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc):
        x1, x2, x3, x4, x5 = y #here y is a vector of 5 values (not functions), at time t, used for getting (dy/dt)(t)
        P_lv = Plv(x1+Vd,Emax,Emin,t,Tc,Vd)
        dydt = [r(x2-P_lv)/Rm-r(P_lv-x4)/Ra, (x3-x2)/(Rs*Cr)-r(x2-P_lv)/(Cr*Rm), (x2-x3)/(Rs*Cs)+x5/Cs, -x5/Ca+r(P_lv-x4)/(Ca*Ra), (x4-x3-Rc*x5)/Ls]
        return dydt

    # RELU for diodes
    def r(u):
        return max(u, 0.)
    
    # Define fixed parameters
    Rs = 1.0
    Rc = 0.0398
    Ca = 0.08
    Cs = 1.33
    Cr = 4.400
    Ls = 0.0005
    startp = 75.

    # Initial conditions
    start_pla = float(start_v*Elastance(Emax, Emin, 0., Tc))
    start_pao = startp
    start_pa = start_pao
    start_qt = 0 #aortic flow is Q_T and is 0 at ED, also see Fig5 in simaan2008dynamical
    y0 = [start_v, start_pla, start_pa, start_pao, start_qt]

    # Solve
    sol = odeint(heart_ode, y0, t, args = (Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc)) #t: list of values

    # volume is the first state variable plus theoretical zero pressure volume
    volumes = np.array(sol[:, 0]) + Vd
    
    return volumes

def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=True, loop_simulated=False):
    

    # Define initial parameters
    init_Emax = Emax # 3.0 # .5 to 3.5
    init_Emin = Emin # 0.04 # .02 to .1
    # init_Tc = Tc # .4 # .4 to 1.7
    init_Vd = Vd # 10.0 # 0 to 25
    
    # DUMMY VOLUME
    # def volume(t, Tc):
        # return 50*np.sin(2 * np.pi * t*(1/Tc))+100
    
    # SOLVE the ODE model for the VOLUME CURVE
    N = 100
    t =  np.linspace(0, Tc*N, int(60000*N)) #np.linspace(1, 100, 1000000)
    volumes = solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t)
    
    # FUNCTIONS for PRESSURE CURVE
    vectorized_Elastance = np.vectorize(Elastance)
    vectorized_Plv = np.vectorize(Plv)

    def pressure(t, volume, Emax, Emin, Tc, Vd):
        return vectorized_Plv(volume, Emax, Emin, t, Tc, Vd)

    # calculate PRESSURE
    pressures = pressure(t, volumes, init_Emax, init_Emin, Tc, init_Vd)
    
    # Create the figure and the loop that we will manipulate
    fig, ax = plt.subplots(figsize=(6, 4))
    plt.ylim((0,220))
    plt.xlim((0,250))
    start = (N-2)*60000
    end = (N)*60000
    if animate or loop_simulated:
        line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
        point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)#, label='End Diastole')
        #point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5, label='End Systole')
    else:
        line = ax.plot(volumes[start:end], pressures[start:end], lw=1, color='b')
    
    plt.title('Predicted PI-SSL LV Pressure Volume Loop', fontsize=16)
    #plt.rcParams['fig.suptitle'] = -2.0
    #ax.set_title(f'Mitral valve circuit resistance (Rm): {Rm} mmHg*s/ml \n Aortic valve circuit resistance (Ra): {Ra} mmHg*s/ml', fontsize=6)
    ax.set_xlabel('LV Volume (ml)')
    ax.set_ylabel('LV Pressure (mmHg)')

    # adjust the main plot to make room for the sliders
    # fig.subplots_adjust(left=0.25, bottom=0.25)

    def update(frame):
        # update to add more of the loop
        end = (N-2)*60000+1000 * frame
        x = volumes[start:end]
        y = pressures[start:end]
        ax.plot(x, y, lw=1, c='b')
        
    if animate:
        anim = animation.FuncAnimation(fig, partial(update), frames=100, interval=30)
        anim.save("prediction.mp4")

    if loop_simulated:
        plt.title('Simulated LV Pressure Volume Loop', fontsize=16)
        anim = animation.FuncAnimation(fig, partial(update), frames=100, interval=30)
        anim.save("simulated.mp4")
        
    return plt, Rm, Ra, Emax, Emin, Vd, Tc, start_v

def pvloop_simulator_plot_only(Rm, Ra, Emax, Emin, Vd, Tc, start_v):
    plot,_,_,_,_,_,_,_ =pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=False, loop_simulated=True)
    animated_sim = "simulated.mp4"
    return animated_sim

#########################################
# LVAD functions
# RELU for diodes
def r(u):
    return max(u, 0.)

def heart_ode0(y, t, Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd):
    x1, x2, x3, x4, x5 = y #here y is a vector of 5 values (not functions), at time t, used for getting (dy/dt)(t)
    P_lv = Plv(x1+Vd,Emax,Emin,t,Tc,Vd)
    dydt = [r(x2-P_lv)/Rm-r(P_lv-x4)/Ra, (x3-x2)/(Rs*Cr)-r(x2-P_lv)/(Cr*Rm), (x2-x3)/(Rs*Cs)+x5/Cs, -x5/Ca+r(P_lv-x4)/(Ca*Ra), (x4-x3-Rc*x5)/Ls]
    return dydt

def getslope(y1, y2, y3, x1, x2, x3):
  sum_x = x1 + x2 + x3
  sum_y = y1 + y2 + y3
  sum_xy = x1*y1 + x2*y2 + x3*y3
  sum_xx = x1*x1 + x2*x2 + x3*x3
  # calculate the coefficients of the least-squares line
  n = 3
  slope = (n*sum_xy - sum_x*sum_y) / (n*sum_xx - sum_x*sum_x)
  return slope

### ODE: for each t (here fixed), gives dy/dt as a function of y(t) at that t, so can be used for integrating the vector y over time
#it is run for each t going from 0 to tmax
def lvad_ode(y, t, Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd, ratew):
    
    #from simaan2008dynamical:
    Ri = 0.0677
    R0 = 0.0677
    Rk = 0.0
    x1bar = 1.
    alpha = -3.5
    Li = 0.0127
    L0 = 0.0127
    b0 = -0.296
    b1 = -0.027
    b2 = 9.9025e-7
    
    x1, x2, x3, x4, x5, x6, x7 = y #here y is a vector of 5 values (not functions), at time t, used for getting (dy/dt)(t)

    P_lv = Plv(x1+Vd,Emax,Emin,t,Tc,Vd)
    if (P_lv <= x1bar): Rk = alpha * (P_lv - x1bar)
    Lstar = Li + L0 + b1
    Lstar2 = -Li -L0 +b1
    Rstar = Ri + R0 + Rk + b0

    dydt = [-x6 + r(x2-P_lv)/Rm-r(P_lv-x4)/Ra, (x3-x2)/(Rs*Cr)-r(x2-P_lv)/(Cr*Rm), (x2-x3)/(Rs*Cs)+x5/Cs, -x5/Ca+r(P_lv-x4)/(Ca*Ra) + x6/Ca, (x4-x3)/Ls-Rc*x5/Ls, -P_lv / Lstar2 + x4/Lstar2 + (Ri+R0+Rk-b0) / Lstar2 * x6 - b2 / Lstar2 * x7**2, ratew]

    return dydt

#returns pv loop and ef when there is no lvad:
def f_nolvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, showpvloop):

    N = 20
    
    start_pla = float(start_v*Elastance(Emax, Emin, 0.0, Tc))
    start_pao = 75.
    start_pa = start_pao
    start_qt = 0.0 #aortic flow is Q_T and is 0 at ED, also see Fig5 in simaan2008dynamical

    y0 = [start_v, start_pla, start_pa, start_pao, start_qt]

    t = np.linspace(0, Tc*N, int(60000*N)) #spaced numbers over interval (start, stop, number_of_steps), 60000 time instances for each heart cycle
    #changed to 60000 for having integer positions for Tmax
    #obtain 5D vector solution:
    sol = odeint(heart_ode0, y0, t, args = (Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc,Vd)) #t: list of values

    result_Vlv = np.array(sol[:, 0]) + Vd
    result_Plv = np.array([Plv(v+Vd, Emax, Emin, xi, Tc, Vd) for xi,v in zip(t,sol[:, 0])])

    #if showpvloop: plt.plot(result_Vlv[18*60000:20*60000], result_Plv[18*60000:20*60000], color='black', label='Without LVAD')

    ved = sol[19*60000, 0] + Vd
    ves = sol[200*int(60/Tc)+9000+19*60000, 0] + Vd
    ef = (ved-ves)/ved * 100.
    minv = min(result_Vlv[19*60000:20*60000-1])
    minp = min(result_Plv[19*60000:20*60000-1])

    result_pao = np.array(sol[:, 3])
    pao_ed = min(result_pao[(N-1)*60000:N*60000-1])
    pao_es = max(result_pao[(N-1)*60000:N*60000-1])

    return ef, pao_ed, pao_es, ((ved - ves) * 60/Tc ) / 1000, sol[19*60000, 0], sol[19*60000, 1], sol[19*60000, 2], sol[19*60000, 3], sol[19*60000, 4], result_Vlv[18*60000:20*60000], result_Plv[18*60000:20*60000]

#returns the w at which suction occurs: (i.e. for which the slope of the envelopes of x6 becomes negative)
def get_suctionw(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, y00, y01, y02, y03, y04, w0, x60, ratew): #slope is slope0 for w

    N = 70


    start_pla = float(start_v*Elastance(Emax, Emin, 0.0, Tc))
    start_pao = 75.
    start_pa = start_pao
    start_qt = 0 #aortic flow is Q_T and is 0 at ED, also see Fig5 in simaan2008dynamical

    y0 = [start_v, start_pla, start_pa, start_pao, start_qt, x60, w0]
    y0 = [y00, y01, y02, y03, y04, x60, w0]

    ncycle = 20000
    n = N * ncycle
    sol = np.zeros((n, 7))
    t = np.linspace(0., Tc * N, n)
    for j in range(7):
      sol[0][j] = y0[j]

    result_Vlv = []
    result_Plv = []
    result_x6 = []
    result_x7 = []
    envx6 = []
    timesenvx6 = []
    slopes = []
    ws = []

    minx6 = 99999
    tmin = 0
    tlastupdate = 0
    lastw = w0
    update = 1

    #solve the ODE step by step by adding dydt*dt:
    for j in range(0, n-1):
      #update y with dydt * dt
      y = sol[j]
      dydt = lvad_ode(y, t[j], Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd, ratew)
      for k in range(7):
        dydt[k] = dydt[k] * (t[j+1] - t[j])
      sol[j+1] = sol[j] + dydt

      #update the min of x6 in the current cylce. also keep the time at which the min is obtained (for getting the slope later)
      if (minx6 > sol[j][5]):
        minx6 = sol[j][5]
        tmin = t[j]

      #add minimum of x6 once each cycle ends: (works). then reset minx6 to 99999 for calculating again the minimum
      if (j%ncycle==0 and j>1):
        envx6.append(minx6)
        timesenvx6.append(tmin)
        minx6 = 99999

      if (len(envx6)>=3):
        slope = getslope(envx6[-1], envx6[-2], envx6[-3], timesenvx6[-1], timesenvx6[-2], timesenvx6[-3])
        slopes.append(slope)
        ws.append(y[6])

    for i in range(n):
      result_x6.append(sol[i, 5])
      result_x7.append(sol[i, 6])

    suction_w = 0
    for i in range(2, len(slopes)):
      if (slopes[i] < 0):
        suction_w = ws[i-1]
        break

    return suction_w

def f_lvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, c, slope, w0, x60, y00, y01, y02, y03, y04): #slope is slope0 for w

    N = 70

    y0 = [y00, y01, y02, y03, y04, x60, w0]

    ncycle = 10000
    n = N * ncycle
    sol = np.zeros((n, 7))
    t = np.linspace(0., Tc * N, n)
    for j in range(7):
      sol[0][j] = y0[j]

    result_Vlv = []
    result_Plv = []
    result_x6 = []
    result_x7 = []
    envx6 = []
    timesenvx6 = []

    minx6 = 99999
    tmin = 0
    tlastupdate = 0
    lastw = w0
    update = 1
    ratew = 0 #6000/60

    #solve the ODE step by step by adding dydt*dt:
    for j in range(0, n-1):
      #update y with dydt * dt
      y = sol[j]
      dydt = lvad_ode(y, t[j], Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd, ratew)
      for k in range(7):
        dydt[k] = dydt[k] * (t[j+1] - t[j])
      sol[j+1] = sol[j] + dydt

      #update the min of x6 in the current cylce. also keep the time at which the min is obtained (for getting the slope later)
      if (minx6 > sol[j][5]):
        minx6 = sol[j][5]
        tmin = t[j]

      #add minimum of x6 once each cycle ends: (works). then reset minx6 to 99999 for calculating again the minimum
      if (j%ncycle==0 and j>1):
        envx6.append(minx6)
        timesenvx6.append(tmin)
        minx6 = 99999

      #update w (if 0.005 s. have passed since the last update):
      if (slope<0):
        update = 0
      if (t[j+1] - tlastupdate > 0.005 and slope>0 and update==1): #abs(slope)>0.0001
        # if there are enough points of envelope: calculate slope:
        if (len(envx6)>=3):
          slope = getslope(envx6[-1], envx6[-2], envx6[-3], timesenvx6[-1], timesenvx6[-2], timesenvx6[-3])
          sol[j+1][6] = lastw + c * slope
        #otherwise: take arbitrary rate (see Fig. 16a in simaan2008dynamical)
        else:
          sol[j+1][6] = lastw + 0.005 * slope
        #save w(k) (see formula (8) simaan2008dynamical) and the last time of update t[j] (will have to wait 0.005 s for next update of w)
        tlastupdate = t[j+1]
        lastw = sol[j+1][6]

    #save functions and print MAP, CO:
    map = 0
    Pao = []

    for i in range(n):
      result_Vlv.append(sol[i, 0] + Vd)
      result_Plv.append(Plv(sol[i, 0]+Vd, Emax, Emin, t[i], Tc, Vd))
      result_x6.append(sol[i, 5])
      result_x7.append(sol[i, 6])
      Pao.append(sol[i, 3])

    colors0=np.zeros((len(result_Vlv[65*ncycle:70*ncycle]), 3))
    for col in colors0:
      col[0]=41/255
      col[1]=128/255
      col[2]=205/255


    #get co and ef:
    ved = max(result_Vlv[50 * ncycle:52 * ncycle])
    ves = min(result_Vlv[50 * ncycle:52 * ncycle])
    #ves = result_Vlv[50 * ncycle + int(ncycle * 0.2 /Tc + 0.15 * ncycle)]
    ef = (ved-ves)/ved*100
    CO = ((ved - ves) * 60/Tc ) / 1000

    #get MAP:
    for i in range(n - 5*ncycle, n):
      map += sol[i, 2]
    map = map/(5*ncycle)

    result_pao = np.array(sol[:, 3])
    pao_ed = min(Pao[50 * ncycle:52 * ncycle])
    pao_es = max(Pao[50 * ncycle:52 * ncycle])

    return ef, pao_ed, pao_es, CO, map, result_Vlv[65*ncycle:70*ncycle], result_Plv[65*ncycle:70*ncycle]

#############################
## Demo functions

def generate_example():
        # get random input
        data_path = 'EchoNet-Dynamic'
        image_data = Echo(root = data_path, split = 'all', target_type=['Filename','LargeIndex','SmallIndex'])
        image_loaded_data = DataLoader(image_data, batch_size=30, shuffle=True)
        val_data = next(iter(image_loaded_data))
        #create_echo_clip(val_data,'test')
        val_seq = val_data[0]
    
        val_tensor = torch.tensor(val_seq, dtype=torch.float32) 
        n=random.randint(0, 27)
        results = model(val_tensor)[n]

        filename = val_data[1][0][n]
        video = f"EchoNet-Dynamic/Videos/{filename}"

        plot, Rm, Ra, Emax, Emin, Vd,Tc, start_v = pvloop_simulator(Rm=round(results[4].item(),2), Ra=round(results[5].item(),2), Emax=round(results[2].item(),2), Emin=round(results[3].item(),2), Vd=round(results[6].item(),2), Tc=round(results[0].item(),2), start_v=round(results[1].item(),2))
        video = video.replace("avi", "mp4")
        #video = f"""<video height='500' width='500' autoplay loop muted> 
                    # <source src={video_file} type='video/mp4'/> 
                    # </video>"""
        animated = "prediction.mp4"  #"""<!DOCTYPE html>
            #<html>
            #<body>
        #<video height='500' width='500' controls> 
        #<source src='prediction.mp4' type='video/mp4'/>
        #  Your browser does not support the video tag.
        #</video>
         #  </body>
        #    </html>
            # """ 
                    #"prediction.mp4" 
                    #<video height='500' width='500' autoplay loop muted> 
                     #   <source src='prediction.mp4' type='video/mp4'/> 
                      #  </video>""" # style="width:48px;height:48px;" # "<img src='prediction.gif' alt='pv_loop'>" # "prediction.mp4"
        return video, animated, Rm, Ra, Emax, Emin, Vd, Tc, start_v


def lvad_plots(Rm, Ra, Emax, Emin, Vd, Tc, start_v, beta, loop_simulated=True):

    ncycle = 10000
    
    Rs = 1.
    Rc = 0.0398
    Ca= 0.08
    Cs= 1.33
    Cr= 4.4
    Ls=0.0005
    
    #get values for periodic loops:
    ef_nolvad, pao_ed, pao_es, co_nolvad, y00, y01, y02, y03, y04, Vlv0, Plv0 = f_nolvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd,Tc, start_v, Emax, 0.0)
    #pao_eds = [pao_ed]
    #pao_ess = [pao_es]
    
    #get suction w: (make w go linearly from w0 to w0 + maxtime * 400, and find w at which suction occurs)
    w0 = 5000.
    ratew = 400.
    x60 = 0.
    suctionw = get_suctionw(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, y00, y01, y02, y03, y04, w0, x60, ratew)
    
    #gamma = 1.8
    c = 0.065 #(in simaan2008dynamical: 0.67, but too fast -> 0.061 gives better shape)
    slope0 = 100.
    w0 = suctionw * beta  #if doesn't work (x6 negative), change gamma down to 1.4 or up to 2.1 # switch to beta = 1/gamma 3/12 for interpretability
    
    #compute new pv loops and ef with lvad added:
    new_ef, pao_ed, pao_es, CO, MAP, Vlvs, Plvs = f_lvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, c, slope0, w0, x60, y00, y01, y02, y03, y04)

    # Create the figure and the loop that we will manipulate
    N = 100
    
    fig, ax = plt.subplots(figsize=(6, 4))
    plt.ylim((0,220))
    plt.xlim((0,250))
    start = (N-2)*60000
    end = (N)*60000
    if loop_simulated:
        line1 = ax.plot(Vlv0[start:(start+1)], Plv0[start:(start+1)], lw=1, color='b',label='No LVAD')
        point1 = ax.scatter(Vlv0[start:(start+1)], Plv0[start:(start+1)], c="b", s=5)#, label='End Diastole')
        line2 = ax.plot(Vlvs[start:(start+1)], Plvs[start:(start+1)], lw=1, color=(78/255, 192/255, 44/255), label=f"LVAD, ω(0)= {round(w0,2)}r/min")
        point2 = ax.scatter(Vlvs[start:(start+1)], Plvs[start:(start+1)], color=(78/255, 192/255, 44/255), s=5)#, label='End Diastole')
        #point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5, label='End Systole')
    else:
        line1 = ax.plot(Vlv0, Plv0, color='blue', label='No LVAD') #blue
        line2 = ax.plot(Vlvs, Plvs, color=(78/255, 192/255, 44/255), label=f"LVAD, ω(0)= {round(w0,2)}r/min") #green

    ax.set_xlabel('LV Volume (ml)')
    ax.set_ylabel('LV Pressure (mmHg)')

    # adjust the main plot to make room for the sliders
    # fig.subplots_adjust(left=0.25, bottom=0.25)

    def update(frame):
        # update to add more of the loop
        end = (N-2)*60000+1000 * frame
        x = Vlv0[start:end]
        y = Plv0[start:end]
        x2 = Vlvs[start:end]
        y2 = Plvs[start:end]
        ax.plot(x, y, lw=1, color='b',label='No LVAD')
        ax.plot(x2, y2, lw=1, color=(78/255, 192/255, 44/255), label=f"LVAD, ω(0)= {round(w0,2)}r/min")


    plt.legend(loc='upper left', framealpha=1)
    plt.ylim((0,220))
    plt.xlim((0,250))

    if loop_simulated:
        # plt.title('', fontsize=16)
        anim = animation.FuncAnimation(fig, partial(update), frames=100, interval=30)
        anim.save("simulated_lvad.mp4")
        anim_plot = "simulated_lvad.mp4"
        return anim_plot, round(ef_nolvad,2), round(new_ef,2), round(co_nolvad,2), round(CO, 2)
    else:
        return plt, round(ef_nolvad,2), round(new_ef,2), round(co_nolvad,2), round(CO, 2)
    
title = "<h1 style='text-align: center; margin-bottom: 1rem'> Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning </h1>"

description = """
<p style='text-align: center'> Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed Alaa <br></p>
<p> We develop methodology for predicting digital twins from non-invasive cardiac ultrasound images in <a href='https://arxiv.org/abs/2403.00177'>Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning</a>. Check out our <a href='https://github.com/AlaaLab/CardioPINN' target='_blank'>code.</a> \n \n 
We demonstrate the ability of our model to predict left ventricular pressure-volume loops using image data here. To run example predictions on samples from the <a href='https://echonet.github.io/dynamic/'>EchoNet</a> dataset, click the first button. \n \n 
</p>
"""

title2 = "<h3 style='text-align: center'> Physics-based model simulation</h3>"

description2 = """
\n \n
Our model uses a hydraulic analogy model of cardiac function from <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a>. Below you can input values of predicted parameters and output a simulated pressure-volume loop predicted from the <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a> model, which is an ordinary differential equation. Tune parameters and press 'Run simulation.'
"""

description3 = """
\n\n
This model can incorporate a tunable left-ventricular assistance device (LVAD) for in-silico experimentation. Click to view the effect of adding an LVAD to the simulated PV loop.
"""

gr.Markdown(title)
gr.Markdown(description)

with gr.Blocks() as demo:
        
    # text
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
    gr.Markdown(description)
        
    with gr.Row():
        with gr.Column(scale=1.5, min_width=100):
            
            generate_button = gr.Button("Load sample echocardiogram and generate result")
            with gr.Row():
                video =  gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.HTML() # 
                plot =  gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.HTML() # 
            
            with gr.Row():
                Rm = gr.Number(label="Mitral valve circuit resistance (Rm) mmHg*s/ml:")
                Ra = gr.Number(label="Aortic valve circuit resistance (Ra) mmHg*s/ml:")
                Emax = gr.Number(label="Maximum elastance (Emax) mmHg/ml:")
                Emin = gr.Number(label="Minimum elastance (Emin) mmHg/ml:")
                Vd = gr.Number(label="Theoretical zero pressure volume (Vd) ml:")
                Tc = gr.Number(label="Cycle duration (Tc) s:")
                start_v = gr.Number(label="Initial volume (start_v) ml:")

            gr.Markdown(title2)
            gr.Markdown(description2)
            
            simulation_button = gr.Button("Run simulation")
            
            
            with gr.Row():
                sl1 = gr.Slider(0.005, 0.1, value=.005, label="Rm (mmHg*s/ml)")
                sl2 = gr.Slider(0.0001, 0.25, value=.0001, label="Ra (mmHg*s/ml)")
                sl3 = gr.Slider(0.5, 3.5, value=.5, label="Emax (mmHg/ml)")
                sl4 = gr.Slider(0.02, 0.1, value= .02, label="Emin (mmHg/ml)")
                sl5 = gr.Slider(4.0, 25.0, value= 4.0, label="Vd (ml)")
                sl6 = gr.Slider(0.4, 1.7, value= 0.4, label="Tc (s)") 
                sl7 = gr.Slider(0.0, 280.0, value= 140., label="start_v (ml)")
            
            with gr.Row():
                simulation = gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.Plot()

            gr.Markdown(description3)

            LVAD_button = gr.Button("Add LVAD")

            with gr.Row():
                beta = gr.Slider(.4, 1.0, value= 1.4, label="Pump speed parameter:")

            with gr.Row():
                lvad = gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.Plot()

            with gr.Row():
                EF_o = gr.Number(label="Ejection fraction (EF) before LVAD:")
                EF_n = gr.Number(label="Ejection fraction (EF) after LVAD:")
                CO_o = gr.Number(label="Cardiac output before LVAD:")
                CO_n = gr.Number(label="Cardiac output after LVAD:")
                #MAP_n = gr.Number(label="Mean arterial pressure (MAP) after LVAD:")
    
    generate_button.click(fn=generate_example, outputs = [video,plot,Rm,Ra,Emax,Emin,Vd,Tc,start_v])
    
    simulation_button.click(fn=pvloop_simulator_plot_only, inputs = [sl1,sl2,sl3,sl4,sl5,sl6,sl7], outputs = [simulation])
    
    LVAD_button.click(fn=lvad_plots, inputs = [sl1,sl2,sl3,sl4,sl5,sl6,sl7,beta], outputs = [lvad, EF_o, EF_n, CO_o, CO_n])
    
demo.launch()