Spaces:
Running
Running
File size: 40,194 Bytes
d37165a 37bad86 971afbd dde56f0 bb3f4fa b6fbf82 570e6d5 dde56f0 97f0f9a f4f238a dde56f0 d2993f4 dde56f0 d37165a dde56f0 608ea30 4d12343 dde56f0 d37165a dde56f0 608ea30 dde56f0 d37165a dde56f0 d37165a dde56f0 d37165a dde56f0 d2993f4 dde56f0 d2993f4 dde56f0 e65991c dde56f0 bee2cd1 dde56f0 229621d dde56f0 ad9c3eb dde56f0 7debea2 97f0f9a c8eaa36 ca624a0 ec192d5 53a34c4 238988e 53a34c4 dde56f0 a4c401d dde56f0 97f0f9a c8eaa36 a4c401d 3d2cf31 64db3e2 3e750a2 229621d a4c401d dde56f0 229621d dde56f0 5b91528 e65991c 5b91528 e65991c 5b91528 d4dd864 5b91528 d4dd864 ca643d4 5b91528 e65991c 5b91528 34172e3 5b91528 d4dd864 5b91528 d4dd864 5b91528 ca643d4 5b91528 d4dd864 5b91528 dde56f0 d2993f4 dde56f0 11e40e8 dde56f0 11e40e8 dde56f0 3d2cf31 11e40e8 dde56f0 ad5199e 08f83a6 a13a624 7fb9720 08f83a6 ca624a0 dde56f0 5b91528 e6e9110 5b91528 d4dd864 5b91528 d4dd864 5b91528 f0f0a6f 5b91528 d4dd864 37bad86 d75074e 437aec6 c2a15c5 37bad86 9373700 4888571 37bad86 5791b74 2125adc 9444bd9 37bad86 4888571 37bad86 6f37971 37bad86 ebc4aae 2125adc 9444bd9 2125adc 93afe33 b9afc37 37bad86 5b91528 37bad86 ebc4aae 37bad86 5b91528 7b646c4 dde56f0 5fa2298 bfc98f5 238988e ba9905a 5b91528 238988e dde56f0 5b91528 6c5fffa dde56f0 8f99b2d dde56f0 238988e ba9905a 238988e dde56f0 238988e dde56f0 b25c973 dde5c67 073aa1e 5b91528 544dd64 5b91528 f0f0a6f dde5c67 e9f5d9e 073aa1e 2586962 dde56f0 dde5c67 dde56f0 f0f0a6f dde56f0 734b43b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 |
import os
os.system('pip uninstall -y gradio')
os.system('pip install gradio==5.0.1')
import gradio as gr
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import torch
from torch.utils import data
from torch.utils.data import DataLoader, Dataset
from torch import nn, optim
from skimage.transform import rescale, resize
from torch import nn, optim
import torch.nn.functional as F
from torch.utils.data import Subset
from scipy.interpolate import interp1d
import collections
import numpy as np
import random
#for pvloop simulator:
import pandas as pd
from scipy.integrate import odeint
import torchvision
import echonet
import matplotlib.animation as animation
from functools import partial
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
sequences_all = []
info_data_all = []
path = 'EchoNet-Dynamic'
output_path = ''
class Echo(torchvision.datasets.VisionDataset):
"""EchoNet-Dynamic Dataset.
Args:
root (string): Root directory of dataset (defaults to `echonet.config.DATA_DIR`)
split (string): One of {``train'', ``val'', ``test'', ``all'', or ``external_test''}
target_type (string or list, optional): Type of target to use,
``Filename'', ``EF'', ``EDV'', ``ESV'', ``LargeIndex'',
``SmallIndex'', ``LargeFrame'', ``SmallFrame'', ``LargeTrace'',
or ``SmallTrace''
Can also be a list to output a tuple with all specified target types.
The targets represent:
``Filename'' (string): filename of video
``EF'' (float): ejection fraction
``EDV'' (float): end-diastolic volume
``ESV'' (float): end-systolic volume
``LargeIndex'' (int): index of large (diastolic) frame in video
``SmallIndex'' (int): index of small (systolic) frame in video
``LargeFrame'' (np.array shape=(3, height, width)): normalized large (diastolic) frame
``SmallFrame'' (np.array shape=(3, height, width)): normalized small (systolic) frame
``LargeTrace'' (np.array shape=(height, width)): left ventricle large (diastolic) segmentation
value of 0 indicates pixel is outside left ventricle
1 indicates pixel is inside left ventricle
``SmallTrace'' (np.array shape=(height, width)): left ventricle small (systolic) segmentation
value of 0 indicates pixel is outside left ventricle
1 indicates pixel is inside left ventricle
Defaults to ``EF''.
mean (int, float, or np.array shape=(3,), optional): means for all (if scalar) or each (if np.array) channel.
Used for normalizing the video. Defaults to 0 (video is not shifted).
std (int, float, or np.array shape=(3,), optional): standard deviation for all (if scalar) or each (if np.array) channel.
Used for normalizing the video. Defaults to 0 (video is not scaled).
length (int or None, optional): Number of frames to clip from video. If ``None'', longest possible clip is returned.
Defaults to 16.
period (int, optional): Sampling period for taking a clip from the video (i.e. every ``period''-th frame is taken)
Defaults to 2.
max_length (int or None, optional): Maximum number of frames to clip from video (main use is for shortening excessively
long videos when ``length'' is set to None). If ``None'', shortening is not applied to any video.
Defaults to 250.
clips (int, optional): Number of clips to sample. Main use is for test-time augmentation with random clips.
Defaults to 1.
pad (int or None, optional): Number of pixels to pad all frames on each side (used as augmentation).
and a window of the original size is taken. If ``None'', no padding occurs.
Defaults to ``None''.
noise (float or None, optional): Fraction of pixels to black out as simulated noise. If ``None'', no simulated noise is added.
Defaults to ``None''.
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
external_test_location (string): Path to videos to use for external testing.
"""
def __init__(self, root=None,
split="train", target_type="EF",
mean=0., std=1.,
length=16, period=2,
max_length=250,
clips=1,
pad=None,
noise=None,
target_transform=None,
external_test_location=None):
if root is None:
root = path
super().__init__(root, target_transform=target_transform)
self.split = split.upper()
if not isinstance(target_type, list):
target_type = [target_type]
self.target_type = target_type
self.mean = mean
self.std = std
self.length = length
self.max_length = max_length
self.period = period
self.clips = clips
self.pad = pad
self.noise = noise
self.target_transform = target_transform
self.external_test_location = external_test_location
self.fnames, self.outcome = [], []
if self.split == "EXTERNAL_TEST":
self.fnames = sorted(os.listdir(self.external_test_location))
else:
# Load video-level labels
with open(f"{self.root}/FileList.csv") as f:
data = pd.read_csv(f)
data["Split"].map(lambda x: x.upper())
if self.split != "ALL":
data = data[data["Split"] == self.split]
self.header = data.columns.tolist()
self.fnames = data["FileName"].tolist()
self.fnames = [fn + ".avi" for fn in self.fnames if os.path.splitext(fn)[1] == ""] # Assume avi if no suffix
self.outcome = data.values.tolist()
# Check that files are present
"""
missing = set(self.fnames) - set(os.listdir(os.path.join(self.root, "Videos")))
if len(missing) != 0:
print("{} videos could not be found in {}:".format(len(missing), os.path.join(self.root, "Videos")))
for f in sorted(missing):
print("\t", f)
raise FileNotFoundError(os.path.join(self.root, "Videos", sorted(missing)[0]))
"""
# Load traces
self.frames = collections.defaultdict(list)
self.trace = collections.defaultdict(_defaultdict_of_lists)
with open(f"{self.root}/VolumeTracings.csv") as f:
header = f.readline().strip().split(",")
assert header == ["FileName", "X1", "Y1", "X2", "Y2", "Frame"]
for line in f:
filename, x1, y1, x2, y2, frame = line.strip().split(',')
x1 = float(x1)
y1 = float(y1)
x2 = float(x2)
y2 = float(y2)
frame = int(frame)
if frame not in self.trace[filename]:
self.frames[filename].append(frame)
self.trace[filename][frame].append((x1, y1, x2, y2))
for filename in self.frames:
for frame in self.frames[filename]:
self.trace[filename][frame] = np.array(self.trace[filename][frame])
# A small number of videos are missing traces; remove these videos
keep = [len(self.frames[f]) >= 2 for f in self.fnames]
self.fnames = [f for (f, k) in zip(self.fnames, keep) if k]
self.outcome = [f for (f, k) in zip(self.outcome, keep) if k]
def __getitem__(self, index):
# Find filename of video
if self.split == "EXTERNAL_TEST":
video = os.path.join(self.external_test_location, self.fnames[index])
elif self.split == "CLINICAL_TEST":
video = os.path.join(self.root, "ProcessedStrainStudyA4c", self.fnames[index])
else:
video = os.path.join(self.root, "Videos", self.fnames[index])
# Load video into np.array
video = echonet.utils.loadvideo(video).astype(np.float32)
# Add simulated noise (black out random pixels)
# 0 represents black at this point (video has not been normalized yet)
if self.noise is not None:
n = video.shape[1] * video.shape[2] * video.shape[3]
ind = np.random.choice(n, round(self.noise * n), replace=False)
f = ind % video.shape[1]
ind //= video.shape[1]
i = ind % video.shape[2]
ind //= video.shape[2]
j = ind
video[:, f, i, j] = 0
# Apply normalization
if isinstance(self.mean, (float, int)):
video -= self.mean
else:
video -= self.mean.reshape(3, 1, 1, 1)
if isinstance(self.std, (float, int)):
video /= self.std
else:
video /= self.std.reshape(3, 1, 1, 1)
# Set number of frames
c, f, h, w = video.shape
if self.length is None:
# Take as many frames as possible
length = f // self.period
else:
# Take specified number of frames
length = self.length
if self.max_length is not None:
# Shorten videos to max_length
length = min(length, self.max_length)
if f < length * self.period:
# Pad video with frames filled with zeros if too short
# 0 represents the mean color (dark grey), since this is after normalization
video = np.concatenate((video, np.zeros((c, length * self.period - f, h, w), video.dtype)), axis=1)
c, f, h, w = video.shape # pylint: disable=E0633
if self.clips == "all":
# Take all possible clips of desired length
start = np.arange(f - (length - 1) * self.period)
else:
# Take random clips from video
start = np.random.choice(f - (length - 1) * self.period, self.clips)
# Gather targets
target = []
for t in self.target_type:
key = self.fnames[index]
if t == "Filename":
target.append(self.fnames[index])
elif t == "LargeIndex":
# Traces are sorted by cross-sectional area
# Largest (diastolic) frame is last
target.append(int(self.frames[key][-1]))
elif t == "SmallIndex":
# Largest (diastolic) frame is first
target.append(int(self.frames[key][0]))
elif t == "LargeFrame":
target.append(video[:, self.frames[key][-1], :, :])
elif t == "SmallFrame":
target.append(video[:, self.frames[key][0], :, :])
elif t in ["LargeTrace", "SmallTrace"]:
if t == "LargeTrace":
t = self.trace[key][self.frames[key][-1]]
else:
t = self.trace[key][self.frames[key][0]]
x1, y1, x2, y2 = t[:, 0], t[:, 1], t[:, 2], t[:, 3]
x = np.concatenate((x1[1:], np.flip(x2[1:])))
y = np.concatenate((y1[1:], np.flip(y2[1:])))
r, c = skimage.draw.polygon(np.rint(y).astype(np.int), np.rint(x).astype(np.int), (video.shape[2], video.shape[3]))
mask = np.zeros((video.shape[2], video.shape[3]), np.float32)
mask[r, c] = 1
target.append(mask)
else:
if self.split == "CLINICAL_TEST" or self.split == "EXTERNAL_TEST":
target.append(np.float32(0))
else:
target.append(np.float32(self.outcome[index][self.header.index(t)]))
if target != []:
target = tuple(target) if len(target) > 1 else target[0]
if self.target_transform is not None:
target = self.target_transform(target)
# Select clips from video
video = tuple(video[:, s + self.period * np.arange(length), :, :] for s in start)
if self.clips == 1:
video = video[0]
else:
video = np.stack(video)
if self.pad is not None:
# Add padding of zeros (mean color of videos)
# Crop of original size is taken out
# (Used as augmentation)
c, l, h, w = video.shape
temp = np.zeros((c, l, h + 2 * self.pad, w + 2 * self.pad), dtype=video.dtype)
temp[:, :, self.pad:-self.pad, self.pad:-self.pad] = video # pylint: disable=E1130
i, j = np.random.randint(0, 2 * self.pad, 2)
video = temp[:, :, i:(i + h), j:(j + w)]
return video, target
def __len__(self):
return len(self.fnames)
def extra_repr(self) -> str:
"""Additional information to add at end of __repr__."""
lines = ["Target type: {target_type}", "Split: {split}"]
return '\n'.join(lines).format(**self.__dict__)
def _defaultdict_of_lists():
"""Returns a defaultdict of lists.
This is used to avoid issues with Windows (if this function is anonymous,
the Echo dataset cannot be used in a dataloader).
"""
return collections.defaultdict(list)
##
print("Done loading training data!")
# define normalization layer to make sure output xi in an interval [ai, bi]:
# define normalization layer to make sure output xi in an interval [ai, bi]:
class IntervalNormalizationLayer(torch.nn.Module):
def __init__(self):
super().__init__()
# new_output = [Tc, start_p, Emax, Emin, Rm, Ra, Vd]
self.a = torch.tensor([0.4, 0., 0.5, 0.02, 0.005, 0.0001, 4.], dtype=torch.float32) #HR in 20-200->Tc in [0.3, 4]
self.b = torch.tensor([1.7, 280., 3.5, 0.1, 0.1, 0.25, 16.], dtype=torch.float32)
#taken out (initial conditions): a: 20, 5, 50; b: 400, 20, 100
def forward(self, inputs):
sigmoid_output = torch.sigmoid(inputs)
scaled_output = sigmoid_output * (self.b - self.a) + self.a
return scaled_output
class NEW3DCNN(nn.Module):
def __init__(self, num_parameters):
super(NEW3DCNN, self).__init__()
self.conv1 = nn.Conv3d(3, 8, kernel_size=3, padding=1)
self.batchnorm1 = nn.BatchNorm3d(8)
self.conv2 = nn.Conv3d(8, 16, kernel_size=3, padding=1)
self.batchnorm2 = nn.BatchNorm3d(16)
self.conv3 = nn.Conv3d(16, 32, kernel_size=3, padding=1)
self.batchnorm3 = nn.BatchNorm3d(32)
self.conv4 = nn.Conv3d(32, 64, kernel_size=3, padding=1)
self.batchnorm4 = nn.BatchNorm3d(64)
self.conv5 = nn.Conv3d(64, 128, kernel_size=3, padding=1)
self.batchnorm5 = nn.BatchNorm3d(128)
self.pool = nn.AdaptiveAvgPool3d(1)
self.fc1 = nn.Linear(128, 512)
self.fc2 = nn.Linear(512, num_parameters)
self.norm1 = IntervalNormalizationLayer()
def forward(self, x):
x = F.relu(self.batchnorm1(self.conv1(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm2(self.conv2(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm3(self.conv3(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm4(self.conv4(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm5(self.conv5(x)))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
x = self.norm1(x)
return x
# Define a neural network with one hidden layer
class Interpolator(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(6, 250).double()
self.fc2 = nn.Linear(250, 2).double()
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# Initialize the neural network
net = Interpolator()
net.load_state_dict(torch.load('final_model_weights/interp6_7param_weight.pt'))
print("Done loading interpolator!")
weights_path = 'final_model_weights/202_full_echonet_7param_Vloss_epoch_200_lr_0.001_weight_best_model.pt'
model = NEW3DCNN(num_parameters = 7)
model.load_state_dict(torch.load(weights_path))
model.to(device)
## PV loops
#returns Plv at time t using Elastance(t) and Vlv(t)-Vd=x1
def Plv(volume, Emax, Emin, t, Tc, Vd):
return Elastance(Emax,Emin,t, Tc)*(volume - Vd)
#returns Elastance(t)
def Elastance(Emax,Emin, t, Tc):
t = t-int(t/Tc)*Tc #can remove this if only want 1st ED (and the 1st ES before)
tn = t/(0.2+0.15*Tc)
return (Emax-Emin)*1.55*(tn/0.7)**1.9/((tn/0.7)**1.9+1.0)*1.0/((tn/1.17)**21.9+1.0) + Emin
def solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t):
# the ODE from Simaan et al 2008
def heart_ode(y, t, Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc):
x1, x2, x3, x4, x5 = y #here y is a vector of 5 values (not functions), at time t, used for getting (dy/dt)(t)
P_lv = Plv(x1+Vd,Emax,Emin,t,Tc,Vd)
dydt = [r(x2-P_lv)/Rm-r(P_lv-x4)/Ra, (x3-x2)/(Rs*Cr)-r(x2-P_lv)/(Cr*Rm), (x2-x3)/(Rs*Cs)+x5/Cs, -x5/Ca+r(P_lv-x4)/(Ca*Ra), (x4-x3-Rc*x5)/Ls]
return dydt
# RELU for diodes
def r(u):
return max(u, 0.)
# Define fixed parameters
Rs = 1.0
Rc = 0.0398
Ca = 0.08
Cs = 1.33
Cr = 4.400
Ls = 0.0005
startp = 75.
# Initial conditions
start_pla = float(start_v*Elastance(Emax, Emin, 0., Tc))
start_pao = startp
start_pa = start_pao
start_qt = 0 #aortic flow is Q_T and is 0 at ED, also see Fig5 in simaan2008dynamical
y0 = [start_v, start_pla, start_pa, start_pao, start_qt]
# Solve
sol = odeint(heart_ode, y0, t, args = (Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc)) #t: list of values
# volume is the first state variable plus theoretical zero pressure volume
volumes = np.array(sol[:, 0]) + Vd
return volumes
def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=True, loop_simulated=False):
# Define initial parameters
init_Emax = Emax # 3.0 # .5 to 3.5
init_Emin = Emin # 0.04 # .02 to .1
# init_Tc = Tc # .4 # .4 to 1.7
init_Vd = Vd # 10.0 # 0 to 25
# DUMMY VOLUME
# def volume(t, Tc):
# return 50*np.sin(2 * np.pi * t*(1/Tc))+100
# SOLVE the ODE model for the VOLUME CURVE
N = 100
t = np.linspace(0, Tc*N, int(60000*N)) #np.linspace(1, 100, 1000000)
volumes = solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t)
# FUNCTIONS for PRESSURE CURVE
vectorized_Elastance = np.vectorize(Elastance)
vectorized_Plv = np.vectorize(Plv)
def pressure(t, volume, Emax, Emin, Tc, Vd):
return vectorized_Plv(volume, Emax, Emin, t, Tc, Vd)
# calculate PRESSURE
pressures = pressure(t, volumes, init_Emax, init_Emin, Tc, init_Vd)
# Create the figure and the loop that we will manipulate
fig, ax = plt.subplots(figsize=(6, 4))
plt.ylim((0,220))
plt.xlim((0,250))
start = (N-2)*60000
end = (N)*60000
if animate or loop_simulated:
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)#, label='End Diastole')
#point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5, label='End Systole')
else:
line = ax.plot(volumes[start:end], pressures[start:end], lw=1, color='b')
plt.title('Predicted PI-SSL LV Pressure Volume Loop', fontsize=16)
#plt.rcParams['fig.suptitle'] = -2.0
#ax.set_title(f'Mitral valve circuit resistance (Rm): {Rm} mmHg*s/ml \n Aortic valve circuit resistance (Ra): {Ra} mmHg*s/ml', fontsize=6)
ax.set_xlabel('LV Volume (ml)')
ax.set_ylabel('LV Pressure (mmHg)')
# adjust the main plot to make room for the sliders
# fig.subplots_adjust(left=0.25, bottom=0.25)
def update(frame):
# update to add more of the loop
end = (N-2)*60000+1000 * frame
x = volumes[start:end]
y = pressures[start:end]
ax.plot(x, y, lw=1, c='b')
if animate:
anim = animation.FuncAnimation(fig, partial(update), frames=100, interval=30)
anim.save("prediction.mp4")
if loop_simulated:
plt.title('Simulated LV Pressure Volume Loop', fontsize=16)
anim = animation.FuncAnimation(fig, partial(update), frames=100, interval=30)
anim.save("simulated.mp4")
return plt, Rm, Ra, Emax, Emin, Vd, Tc, start_v
def pvloop_simulator_plot_only(Rm, Ra, Emax, Emin, Vd, Tc, start_v):
plot,_,_,_,_,_,_,_ =pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=False, loop_simulated=True)
animated_sim = "simulated.mp4"
return animated_sim
#########################################
# LVAD functions
# RELU for diodes
def r(u):
return max(u, 0.)
def heart_ode0(y, t, Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd):
x1, x2, x3, x4, x5 = y #here y is a vector of 5 values (not functions), at time t, used for getting (dy/dt)(t)
P_lv = Plv(x1+Vd,Emax,Emin,t,Tc,Vd)
dydt = [r(x2-P_lv)/Rm-r(P_lv-x4)/Ra, (x3-x2)/(Rs*Cr)-r(x2-P_lv)/(Cr*Rm), (x2-x3)/(Rs*Cs)+x5/Cs, -x5/Ca+r(P_lv-x4)/(Ca*Ra), (x4-x3-Rc*x5)/Ls]
return dydt
def getslope(y1, y2, y3, x1, x2, x3):
sum_x = x1 + x2 + x3
sum_y = y1 + y2 + y3
sum_xy = x1*y1 + x2*y2 + x3*y3
sum_xx = x1*x1 + x2*x2 + x3*x3
# calculate the coefficients of the least-squares line
n = 3
slope = (n*sum_xy - sum_x*sum_y) / (n*sum_xx - sum_x*sum_x)
return slope
### ODE: for each t (here fixed), gives dy/dt as a function of y(t) at that t, so can be used for integrating the vector y over time
#it is run for each t going from 0 to tmax
def lvad_ode(y, t, Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd, ratew):
#from simaan2008dynamical:
Ri = 0.0677
R0 = 0.0677
Rk = 0.0
x1bar = 1.
alpha = -3.5
Li = 0.0127
L0 = 0.0127
b0 = -0.296
b1 = -0.027
b2 = 9.9025e-7
x1, x2, x3, x4, x5, x6, x7 = y #here y is a vector of 5 values (not functions), at time t, used for getting (dy/dt)(t)
P_lv = Plv(x1+Vd,Emax,Emin,t,Tc,Vd)
if (P_lv <= x1bar): Rk = alpha * (P_lv - x1bar)
Lstar = Li + L0 + b1
Lstar2 = -Li -L0 +b1
Rstar = Ri + R0 + Rk + b0
dydt = [-x6 + r(x2-P_lv)/Rm-r(P_lv-x4)/Ra, (x3-x2)/(Rs*Cr)-r(x2-P_lv)/(Cr*Rm), (x2-x3)/(Rs*Cs)+x5/Cs, -x5/Ca+r(P_lv-x4)/(Ca*Ra) + x6/Ca, (x4-x3)/Ls-Rc*x5/Ls, -P_lv / Lstar2 + x4/Lstar2 + (Ri+R0+Rk-b0) / Lstar2 * x6 - b2 / Lstar2 * x7**2, ratew]
return dydt
#returns pv loop and ef when there is no lvad:
def f_nolvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, showpvloop):
N = 20
start_pla = float(start_v*Elastance(Emax, Emin, 0.0, Tc))
start_pao = 75.
start_pa = start_pao
start_qt = 0.0 #aortic flow is Q_T and is 0 at ED, also see Fig5 in simaan2008dynamical
y0 = [start_v, start_pla, start_pa, start_pao, start_qt]
t = np.linspace(0, Tc*N, int(60000*N)) #spaced numbers over interval (start, stop, number_of_steps), 60000 time instances for each heart cycle
#changed to 60000 for having integer positions for Tmax
#obtain 5D vector solution:
sol = odeint(heart_ode0, y0, t, args = (Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc,Vd)) #t: list of values
result_Vlv = np.array(sol[:, 0]) + Vd
result_Plv = np.array([Plv(v+Vd, Emax, Emin, xi, Tc, Vd) for xi,v in zip(t,sol[:, 0])])
#if showpvloop: plt.plot(result_Vlv[18*60000:20*60000], result_Plv[18*60000:20*60000], color='black', label='Without LVAD')
ved = sol[19*60000, 0] + Vd
ves = sol[200*int(60/Tc)+9000+19*60000, 0] + Vd
ef = (ved-ves)/ved * 100.
minv = min(result_Vlv[19*60000:20*60000-1])
minp = min(result_Plv[19*60000:20*60000-1])
result_pao = np.array(sol[:, 3])
pao_ed = min(result_pao[(N-1)*60000:N*60000-1])
pao_es = max(result_pao[(N-1)*60000:N*60000-1])
return ef, pao_ed, pao_es, ((ved - ves) * 60/Tc ) / 1000, sol[19*60000, 0], sol[19*60000, 1], sol[19*60000, 2], sol[19*60000, 3], sol[19*60000, 4], result_Vlv[18*60000:20*60000], result_Plv[18*60000:20*60000]
#returns the w at which suction occurs: (i.e. for which the slope of the envelopes of x6 becomes negative)
def get_suctionw(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, y00, y01, y02, y03, y04, w0, x60, ratew): #slope is slope0 for w
N = 70
start_pla = float(start_v*Elastance(Emax, Emin, 0.0, Tc))
start_pao = 75.
start_pa = start_pao
start_qt = 0 #aortic flow is Q_T and is 0 at ED, also see Fig5 in simaan2008dynamical
y0 = [start_v, start_pla, start_pa, start_pao, start_qt, x60, w0]
y0 = [y00, y01, y02, y03, y04, x60, w0]
ncycle = 20000
n = N * ncycle
sol = np.zeros((n, 7))
t = np.linspace(0., Tc * N, n)
for j in range(7):
sol[0][j] = y0[j]
result_Vlv = []
result_Plv = []
result_x6 = []
result_x7 = []
envx6 = []
timesenvx6 = []
slopes = []
ws = []
minx6 = 99999
tmin = 0
tlastupdate = 0
lastw = w0
update = 1
#solve the ODE step by step by adding dydt*dt:
for j in range(0, n-1):
#update y with dydt * dt
y = sol[j]
dydt = lvad_ode(y, t[j], Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd, ratew)
for k in range(7):
dydt[k] = dydt[k] * (t[j+1] - t[j])
sol[j+1] = sol[j] + dydt
#update the min of x6 in the current cylce. also keep the time at which the min is obtained (for getting the slope later)
if (minx6 > sol[j][5]):
minx6 = sol[j][5]
tmin = t[j]
#add minimum of x6 once each cycle ends: (works). then reset minx6 to 99999 for calculating again the minimum
if (j%ncycle==0 and j>1):
envx6.append(minx6)
timesenvx6.append(tmin)
minx6 = 99999
if (len(envx6)>=3):
slope = getslope(envx6[-1], envx6[-2], envx6[-3], timesenvx6[-1], timesenvx6[-2], timesenvx6[-3])
slopes.append(slope)
ws.append(y[6])
for i in range(n):
result_x6.append(sol[i, 5])
result_x7.append(sol[i, 6])
suction_w = 0
for i in range(2, len(slopes)):
if (slopes[i] < 0):
suction_w = ws[i-1]
break
return suction_w
def f_lvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, c, slope, w0, x60, y00, y01, y02, y03, y04): #slope is slope0 for w
N = 70
y0 = [y00, y01, y02, y03, y04, x60, w0]
ncycle = 10000
n = N * ncycle
sol = np.zeros((n, 7))
t = np.linspace(0., Tc * N, n)
for j in range(7):
sol[0][j] = y0[j]
result_Vlv = []
result_Plv = []
result_x6 = []
result_x7 = []
envx6 = []
timesenvx6 = []
minx6 = 99999
tmin = 0
tlastupdate = 0
lastw = w0
update = 1
ratew = 0 #6000/60
#solve the ODE step by step by adding dydt*dt:
for j in range(0, n-1):
#update y with dydt * dt
y = sol[j]
dydt = lvad_ode(y, t[j], Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc, Vd, ratew)
for k in range(7):
dydt[k] = dydt[k] * (t[j+1] - t[j])
sol[j+1] = sol[j] + dydt
#update the min of x6 in the current cylce. also keep the time at which the min is obtained (for getting the slope later)
if (minx6 > sol[j][5]):
minx6 = sol[j][5]
tmin = t[j]
#add minimum of x6 once each cycle ends: (works). then reset minx6 to 99999 for calculating again the minimum
if (j%ncycle==0 and j>1):
envx6.append(minx6)
timesenvx6.append(tmin)
minx6 = 99999
#update w (if 0.005 s. have passed since the last update):
if (slope<0):
update = 0
if (t[j+1] - tlastupdate > 0.005 and slope>0 and update==1): #abs(slope)>0.0001
# if there are enough points of envelope: calculate slope:
if (len(envx6)>=3):
slope = getslope(envx6[-1], envx6[-2], envx6[-3], timesenvx6[-1], timesenvx6[-2], timesenvx6[-3])
sol[j+1][6] = lastw + c * slope
#otherwise: take arbitrary rate (see Fig. 16a in simaan2008dynamical)
else:
sol[j+1][6] = lastw + 0.005 * slope
#save w(k) (see formula (8) simaan2008dynamical) and the last time of update t[j] (will have to wait 0.005 s for next update of w)
tlastupdate = t[j+1]
lastw = sol[j+1][6]
#save functions and print MAP, CO:
map = 0
Pao = []
for i in range(n):
result_Vlv.append(sol[i, 0] + Vd)
result_Plv.append(Plv(sol[i, 0]+Vd, Emax, Emin, t[i], Tc, Vd))
result_x6.append(sol[i, 5])
result_x7.append(sol[i, 6])
Pao.append(sol[i, 3])
colors0=np.zeros((len(result_Vlv[65*ncycle:70*ncycle]), 3))
for col in colors0:
col[0]=41/255
col[1]=128/255
col[2]=205/255
#get co and ef:
ved = max(result_Vlv[50 * ncycle:52 * ncycle])
ves = min(result_Vlv[50 * ncycle:52 * ncycle])
#ves = result_Vlv[50 * ncycle + int(ncycle * 0.2 /Tc + 0.15 * ncycle)]
ef = (ved-ves)/ved*100
CO = ((ved - ves) * 60/Tc ) / 1000
#get MAP:
for i in range(n - 5*ncycle, n):
map += sol[i, 2]
map = map/(5*ncycle)
result_pao = np.array(sol[:, 3])
pao_ed = min(Pao[50 * ncycle:52 * ncycle])
pao_es = max(Pao[50 * ncycle:52 * ncycle])
return ef, pao_ed, pao_es, CO, map, result_Vlv[65*ncycle:70*ncycle], result_Plv[65*ncycle:70*ncycle]
#############################
## Demo functions
def generate_example():
# get random input
data_path = 'EchoNet-Dynamic'
image_data = Echo(root = data_path, split = 'all', target_type=['Filename','LargeIndex','SmallIndex'])
image_loaded_data = DataLoader(image_data, batch_size=30, shuffle=True)
val_data = next(iter(image_loaded_data))
#create_echo_clip(val_data,'test')
val_seq = val_data[0]
val_tensor = torch.tensor(val_seq, dtype=torch.float32)
n=random.randint(0, 27)
results = model(val_tensor)[n]
filename = val_data[1][0][n]
video = f"EchoNet-Dynamic/Videos/{filename}"
plot, Rm, Ra, Emax, Emin, Vd,Tc, start_v = pvloop_simulator(Rm=round(results[4].item(),2), Ra=round(results[5].item(),2), Emax=round(results[2].item(),2), Emin=round(results[3].item(),2), Vd=round(results[6].item(),2), Tc=round(results[0].item(),2), start_v=round(results[1].item(),2))
video = video.replace("avi", "mp4")
#video = f"""<video height='500' width='500' autoplay loop muted>
# <source src={video_file} type='video/mp4'/>
# </video>"""
animated = "prediction.mp4" #"""<!DOCTYPE html>
#<html>
#<body>
#<video height='500' width='500' controls>
#<source src='prediction.mp4' type='video/mp4'/>
# Your browser does not support the video tag.
#</video>
# </body>
# </html>
# """
#"prediction.mp4"
#<video height='500' width='500' autoplay loop muted>
# <source src='prediction.mp4' type='video/mp4'/>
# </video>""" # style="width:48px;height:48px;" # "<img src='prediction.gif' alt='pv_loop'>" # "prediction.mp4"
return video, animated, Rm, Ra, Emax, Emin, Vd, Tc, start_v
def lvad_plots(Rm, Ra, Emax, Emin, Vd, Tc, start_v, beta, loop_simulated=True):
ncycle = 10000
Rs = 1.
Rc = 0.0398
Ca= 0.08
Cs= 1.33
Cr= 4.4
Ls=0.0005
#get values for periodic loops:
ef_nolvad, pao_ed, pao_es, co_nolvad, y00, y01, y02, y03, y04, Vlv0, Plv0 = f_nolvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd,Tc, start_v, Emax, 0.0)
#pao_eds = [pao_ed]
#pao_ess = [pao_es]
#get suction w: (make w go linearly from w0 to w0 + maxtime * 400, and find w at which suction occurs)
w0 = 5000.
ratew = 400.
x60 = 0.
suctionw = get_suctionw(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, y00, y01, y02, y03, y04, w0, x60, ratew)
#gamma = 1.8
c = 0.065 #(in simaan2008dynamical: 0.67, but too fast -> 0.061 gives better shape)
slope0 = 100.
w0 = suctionw * beta #if doesn't work (x6 negative), change gamma down to 1.4 or up to 2.1 # switch to beta = 1/gamma 3/12 for interpretability
#compute new pv loops and ef with lvad added:
new_ef, pao_ed, pao_es, CO, MAP, Vlvs, Plvs = f_lvad(Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emin, Vd, Tc, start_v, Emax, c, slope0, w0, x60, y00, y01, y02, y03, y04)
# Create the figure and the loop that we will manipulate
N = 2
fig, ax = plt.subplots(figsize=(6, 4))
plt.ylim((0,220))
plt.xlim((0,250))
start = (N-2)*60000
end = (N)*60000
#point1 = ax.scatter(Vlv0[start:(start+1)], Plv0[start:(start+1)], c="b", s=5)#, label='End Diastole')
if loop_simulated:
#line1 = ax.plot(Vlv0[start:end], Plv0[start:end], lw=1, color='b',label='No LVAD')
#point1 = ax.scatter(Vlv0[start:end], Plv0[start:end], c="b", s=5)#, label='End Diastole')
line2 = ax.plot(Vlvs[start:(start+1)], Plvs[start:(start+1)], lw=1, color=(78/255, 192/255, 44/255), label=f"LVAD, ω(0)= {round(w0,2)}r/min")
point2 = ax.scatter(Vlvs[start:(start+1)], Plvs[start:(start+1)], color=(78/255, 192/255, 44/255), s=5)#, label='End Diastole')
#point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5, label='End Systole')
#else:
#line1 = ax.plot(Vlv0, Plv0, color='blue', label='No LVAD') #blue
#line2 = ax.plot(Vlvs, Plvs, color=(78/255, 192/255, 44/255), label=f"LVAD, ω(0)= {round(w0,2)}r/min") #green
ax.set_xlabel('LV Volume (ml)')
ax.set_ylabel('LV Pressure (mmHg)')
# adjust the main plot to make room for the sliders
# fig.subplots_adjust(left=0.25, bottom=0.25)
def update(frame):
# update to add more of the loop
end = (N-2)*60000+800 * frame
#x = Vlv0[start:end]
#y = Plv0[start:end]
x2 = Vlvs[start:end]
y2 = Plvs[start:end]
#ax.plot(x2, y2, lw=1, color='b',label='No LVAD')
ax.plot(Vlv0[start:(N)*60000], Plv0[start:(N)*60000], lw=1, color='b',label='No LVAD')
ax.plot(x2, y2, lw=1, color=(78/255, 192/255, 44/255), label=f"LVAD, ω(0)= {round(w0,2)}r/min")
plt.legend(loc='upper left', framealpha=1)
if loop_simulated:
# plt.title('', fontsize=16)
anim = animation.FuncAnimation(fig, partial(update), frames=110, interval=30)
anim.save("simulated_lvad.mp4")
anim_plot = "simulated_lvad.mp4"
return anim_plot, round(ef_nolvad,2), round(new_ef,2), round(co_nolvad,2), round(CO, 2)
else:
return plt, round(ef_nolvad,2), round(new_ef,2), round(co_nolvad,2), round(CO, 2)
title = "<h1 style='text-align: center; margin-bottom: 1rem'> Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning </h1>"
description = """
<p style='text-align: center'> Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed Alaa <br></p>
<p> We develop methodology for predicting digital twins from non-invasive cardiac ultrasound images in <a href='https://arxiv.org/abs/2403.00177'>Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning</a>. Check out our <a href='https://github.com/AlaaLab/CardioPINN' target='_blank'>code.</a> \n \n
We demonstrate the ability of our model to predict left ventricular pressure-volume loops using image data here. To run example predictions on samples from the <a href='https://echonet.github.io/dynamic/'>EchoNet</a> dataset, click the first button. \n \n
</p>
"""
title2 = "<h3 style='text-align: center'> Physics-based model simulation</h3>"
description2 = """
\n \n
Our model uses a hydraulic analogy model of cardiac function from <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a>. Below you can input values of predicted parameters and output a simulated pressure-volume loop predicted from the <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a> model, which is an ordinary differential equation. Tune parameters and press 'Run simulation.'
"""
description3 = """
\n\n
This model can incorporate a tunable left-ventricular assistance device (LVAD) for in-silico experimentation. Click to view the effect of adding an LVAD to the simulated PV loop.
"""
gr.Markdown(title)
gr.Markdown(description)
with gr.Blocks() as demo:
# text
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1.5, min_width=100):
generate_button = gr.Button("Load sample echocardiogram and generate result")
with gr.Row():
video = gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.HTML() #
plot = gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.HTML() #
with gr.Row():
Rm = gr.Number(label="Mitral valve circuit resistance (Rm) mmHg*s/ml:")
Ra = gr.Number(label="Aortic valve circuit resistance (Ra) mmHg*s/ml:")
Emax = gr.Number(label="Maximum elastance (Emax) mmHg/ml:")
Emin = gr.Number(label="Minimum elastance (Emin) mmHg/ml:")
Vd = gr.Number(label="Theoretical zero pressure volume (Vd) ml:")
Tc = gr.Number(label="Cycle duration (Tc) s:")
start_v = gr.Number(label="Initial volume (start_v) ml:")
gr.Markdown(title2)
gr.Markdown(description2)
simulation_button = gr.Button("Run simulation")
with gr.Row():
sl1 = gr.Slider(0.005, 0.1, value=.005, label="Rm (mmHg*s/ml)")
sl2 = gr.Slider(0.0001, 0.25, value=.0001, label="Ra (mmHg*s/ml)")
sl3 = gr.Slider(0.5, 3.5, value=.5, label="Emax (mmHg/ml)")
sl4 = gr.Slider(0.02, 0.1, value= .02, label="Emin (mmHg/ml)")
sl5 = gr.Slider(4.0, 25.0, value= 4.0, label="Vd (ml)")
sl6 = gr.Slider(0.4, 1.7, value= 0.4, label="Tc (s)")
sl7 = gr.Slider(0.0, 280.0, value= 140., label="start_v (ml)")
with gr.Row():
simulation = gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.Plot()
gr.Markdown(description3)
LVAD_button = gr.Button("Add LVAD")
with gr.Row():
beta = gr.Slider(.4, 1.0, value= 1.4, label="Pump speed parameter:")
with gr.Row():
lvad = gr.PlayableVideo(autoplay='true',loop='true',width=300,height=300) # gr.Plot()
with gr.Row():
EF_o = gr.Number(label="Ejection fraction (EF) before LVAD:")
EF_n = gr.Number(label="Ejection fraction (EF) after LVAD:")
CO_o = gr.Number(label="Cardiac output before LVAD:")
CO_n = gr.Number(label="Cardiac output after LVAD:")
#MAP_n = gr.Number(label="Mean arterial pressure (MAP) after LVAD:")
generate_button.click(fn=generate_example, outputs = [video,plot,Rm,Ra,Emax,Emin,Vd,Tc,start_v])
simulation_button.click(fn=pvloop_simulator_plot_only, inputs = [sl1,sl2,sl3,sl4,sl5,sl6,sl7], outputs = [simulation])
LVAD_button.click(fn=lvad_plots, inputs = [sl1,sl2,sl3,sl4,sl5,sl6,sl7,beta], outputs = [lvad, EF_o, EF_n, CO_o, CO_n])
demo.launch() |