File size: 9,288 Bytes
d804881
74a35d9
28d0c5f
 
d804881
5abbb8c
28d0c5f
74a35d9
28d0c5f
 
74a35d9
28d0c5f
 
74a35d9
88d40e4
74a35d9
28d0c5f
e8a1983
 
 
 
88d40e4
28d0c5f
 
 
 
 
 
d804881
 
 
28d0c5f
 
 
 
 
 
 
 
3fdcb38
28d0c5f
 
 
 
9ab32d7
 
d804881
 
 
28d0c5f
9ab32d7
d804881
 
 
e272322
 
 
 
 
e2f3a00
e272322
 
5abbb8c
d804881
 
 
 
 
 
 
 
 
 
28d0c5f
 
5abbb8c
51b11b3
28d0c5f
5abbb8c
 
 
28d0c5f
 
74a35d9
5abbb8c
28d0c5f
0b0c1a6
b5c05cd
0b0c1a6
 
28d0c5f
 
d804881
 
74a35d9
5abbb8c
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51b11b3
 
 
28d0c5f
 
 
 
 
 
 
 
 
74a35d9
5abbb8c
 
ca7e6be
9ab32d7
28d0c5f
9ab32d7
 
ca7e6be
28d0c5f
 
 
 
 
 
 
9ab32d7
 
 
 
 
 
 
 
 
28d0c5f
5abbb8c
28d0c5f
 
5abbb8c
 
 
28d0c5f
 
 
 
 
 
 
d804881
 
28d0c5f
5abbb8c
28d0c5f
 
 
 
5abbb8c
28d0c5f
 
 
 
5abbb8c
 
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5abbb8c
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

import base64
import json
import os
from pathlib import Path
import tempfile
import time

import audioread
import numpy as np
import torch
from torchaudio.transforms import Resample

from aip_trainer import WordMatching as wm, app_logger
from aip_trainer import pronunciationTrainer, sample_rate_start


trainer_SST_lambda = {
    'de': pronunciationTrainer.getTrainer("de"),
    'en': pronunciationTrainer.getTrainer("en")
}
transform = Resample(orig_freq=sample_rate_start, new_freq=16000)


def lambda_handler(event, context):
    data = json.loads(event['body'])

    real_text = data['title']
    base64Audio = data["base64Audio"]
    app_logger.debug(f"base64Audio:{base64Audio} ...")
    file_bytes_or_audiotmpfile = base64.b64decode(base64Audio[22:].encode('utf-8'))
    language = data['language']

    if len(real_text) == 0:
        return {
            'statusCode': 200,
            'headers': {
                'Access-Control-Allow-Headers': '*',
                'Access-Control-Allow-Credentials': "true",
                'Access-Control-Allow-Origin': 'http://127.0.0.1:3000/',
                'Access-Control-Allow-Methods': 'OPTIONS,POST,GET'
            },
            'body': ''
        }
    output = get_speech_to_score_dict(real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, remove_random_file=False)
    output = json.dumps(output)
    app_logger.debug(f"output: {output} ...")
    return output


def get_speech_to_score_dict(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True):
    app_logger.info(f"real_text:{real_text} ...")
    app_logger.debug(f"file_bytes:{file_bytes_or_audiotmpfile} ...")
    app_logger.info(f"language:{language} ...")

    if real_text is None or len(real_text) == 0:
        raise ValueError(f"cannot read an empty/None text: '{real_text}'...")
    if language is None or len(language) == 0:
        raise NotImplementedError(f"Not tested/supported with '{language}' language...")
    if not isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)) and (file_bytes_or_audiotmpfile is None or len(file_bytes_or_audiotmpfile) == 0 or os.path.getsize(file_bytes_or_audiotmpfile) == 0):
        raise ValueError(f"cannot read an empty/None file: '{file_bytes_or_audiotmpfile}'...")

    start0 = time.time()

    random_file_name = file_bytes_or_audiotmpfile
    app_logger.debug(f"random_file_name:{random_file_name} ...")
    if isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)):
        app_logger.debug("writing streaming data to file on disk...")
        with tempfile.NamedTemporaryFile(prefix="temp_sound_speech_score_", suffix=".ogg", delete=False) as f1:
            f1.write(file_bytes_or_audiotmpfile)
            duration = time.time() - start0
            app_logger.info(f'Saved binary data in file in {duration}s.')
            random_file_name = f1.name

    start = time.time()
    app_logger.info(f'Loading .ogg file file {random_file_name} ...')
    signal, _ = audioread_load(random_file_name)

    duration = time.time() - start
    app_logger.info(f'Read .ogg file {random_file_name} in {duration}s.')

    signal = transform(torch.Tensor(signal)).unsqueeze(0)

    duration = time.time() - start
    app_logger.info(f'Loaded .ogg file {random_file_name} in {duration}s.')

    language_trainer_sst_lambda = trainer_SST_lambda[language]
    app_logger.info('language_trainer_sst_lambda: preparing...')
    result = language_trainer_sst_lambda.processAudioForGivenText(signal, real_text)
    app_logger.info(f'language_trainer_sst_lambda: result: {result}...')

    start = time.time()
    if remove_random_file:
        os.remove(random_file_name)
    duration = time.time() - start
    app_logger.info(f'Deleted file {random_file_name} in {duration}s.')

    start = time.time()
    real_transcripts_ipa = ' '.join(
        [word[0] for word in result['real_and_transcribed_words_ipa']])
    matched_transcripts_ipa = ' '.join(
        [word[1] for word in result['real_and_transcribed_words_ipa']])

    real_transcripts = ' '.join(
        [word[0] for word in result['real_and_transcribed_words']])
    matched_transcripts = ' '.join(
        [word[1] for word in result['real_and_transcribed_words']])

    words_real = real_transcripts.lower().split()
    mapped_words = matched_transcripts.split()

    is_letter_correct_all_words = ''
    for idx, word_real in enumerate(words_real):
        mapped_letters, _ = wm.get_best_mapped_words(
            mapped_words[idx], word_real
        )

        is_letter_correct = wm.getWhichLettersWereTranscribedCorrectly(
            word_real, mapped_letters)  # , mapped_letters_indices)

        is_letter_correct_all_words += ''.join([str(is_correct)
                                                for is_correct in is_letter_correct]) + ' '

    pair_accuracy_category = ' '.join(
        [str(category) for category in result['pronunciation_categories']])
    duration = time.time() - start
    duration_tot = time.time() - start0
    app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')
    pronunciation_accuracy = float(result['pronunciation_accuracy'])
    ipa_transcript = result['recording_ipa']

    return {'real_transcript': result['recording_transcript'],
           'ipa_transcript': ipa_transcript,
           'pronunciation_accuracy': float(f"{pronunciation_accuracy:.2f}"),
           'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
           'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
           'pair_accuracy_category': pair_accuracy_category,
           'start_time': result['start_time'],
           'end_time': result['end_time'],
           'is_letter_correct_all_words': is_letter_correct_all_words}


def get_speech_to_score_tuple(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True):
    output = get_speech_to_score_dict(real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, remove_random_file=remove_random_file)
    real_transcripts = output['real_transcripts']
    is_letter_correct_all_words = output['is_letter_correct_all_words']
    pronunciation_accuracy = output['pronunciation_accuracy']
    ipa_transcript = output['ipa_transcript']
    real_transcripts_ipa = output['real_transcripts_ipa']
    return real_transcripts, is_letter_correct_all_words, pronunciation_accuracy, ipa_transcript, real_transcripts_ipa, json.dumps(output)


# From Librosa

def calc_start_end(sr_native, time_position, n_channels):
    return int(np.round(sr_native * time_position)) * n_channels


def audioread_load(path, offset=0.0, duration=None, dtype=np.float32):
    """Load an audio buffer using audioread.

    This loads one block at a time, and then concatenates the results.
    """

    import shutil
    shutil.copyfile(path, Path("/tmp") / f"test_en_{Path(path).name}")
    y = []
    app_logger.debug(f"reading audio file at path:{path} ...")
    with audioread.audio_open(path) as input_file:
        sr_native = input_file.samplerate
        n_channels = input_file.channels

        s_start = calc_start_end(sr_native, offset, n_channels)

        if duration is None:
            s_end = np.inf
        else:
            duration = calc_start_end(sr_native, duration, n_channels)
            s_end = duration + s_start

        n = 0

        for frame in input_file:
            frame = buf_to_float(frame, dtype=dtype)
            n_prev = n
            n = n + len(frame)

            if n < s_start:
                # offset is after the current frame
                # keep reading
                continue

            if s_end < n_prev:
                # we're off the end.  stop reading
                break

            if s_end < n:
                # the end is in this frame.  crop.
                frame = frame[: s_end - n_prev]

            if n_prev <= s_start <= n:
                # beginning is in this frame
                frame = frame[(s_start - n_prev):]

            # tack on the current frame
            y.append(frame)

    if y:
        y = np.concatenate(y)
        if n_channels > 1:
            y = y.reshape((-1, n_channels)).T
    else:
        y = np.empty(0, dtype=dtype)

    return y, sr_native


# From Librosa


def buf_to_float(x, n_bytes=2, dtype=np.float32):
    """Convert an integer buffer to floating point values.
    This is primarily useful when loading integer-valued wav data
    into numpy arrays.

    Parameters
    ----------
    x : np.ndarray [dtype=int]
        The integer-valued data buffer

    n_bytes : int [1, 2, 4]
        The number of bytes per sample in ``x``

    dtype : numeric type
        The target output type (default: 32-bit float)

    Returns
    -------
    x_float : np.ndarray [dtype=float]
        The input data buffer cast to floating point
    """

    # Invert the scale of the data
    scale = 1.0 / float(1 << ((8 * n_bytes) - 1))

    # Construct the format string
    fmt = "<i{:d}".format(n_bytes)

    # Rescale and format the data buffer
    return scale * np.frombuffer(x, fmt).astype(dtype)