File size: 6,672 Bytes
b5c05cd
 
 
1e30c4b
28d0c5f
70d4503
28d0c5f
88d40e4
b5c05cd
 
5bae85d
88d40e4
 
5bae85d
 
 
acfca85
5bae85d
9ab32d7
 
 
 
5bae85d
 
 
 
 
9ab32d7
5bae85d
9ab32d7
5bae85d
 
 
 
 
 
 
 
 
9ab32d7
5bae85d
 
 
9ab32d7
5bae85d
9ab32d7
5bae85d
9ab32d7
 
5bae85d
 
 
 
 
 
 
 
 
 
9ab32d7
5bae85d
 
 
 
 
 
 
9ab32d7
 
1e30c4b
 
 
 
 
 
5bae85d
b5c05cd
 
 
 
 
 
 
 
1e30c4b
 
 
 
 
 
b5c05cd
5bae85d
 
 
 
 
 
 
1e30c4b
 
b5c05cd
 
 
28d0c5f
1e30c4b
 
 
 
5bae85d
1e30c4b
 
 
 
 
 
 
 
acfca85
1e30c4b
 
acfca85
1e30c4b
 
 
 
 
 
5bae85d
1e30c4b
5bae85d
1e30c4b
 
 
 
 
7aaf29c
70d4503
b5c05cd
1e30c4b
 
 
 
 
 
28d0c5f
1e30c4b
 
 
 
 
28d0c5f
7aaf29c
5bae85d
 
 
 
 
 
 
 
acfca85
5bae85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
from pathlib import Path
import tempfile
import torch
import torch.nn as nn
from silero.utils import Decoder

from aip_trainer import app_logger, sample_rate_start


default_speaker_dict = {
    "de": {"speaker": "karlsson", "model_id": "v3_de", "sample_rate": sample_rate_start},
    "en": {"speaker": "en_0", "model_id": "v3_en", "sample_rate": sample_rate_start},
}


def silero_tts(language="en", version="latest", output_folder: Path | str = None, **kwargs):
    """Silero Text-To-Speech Models
    language (str): language of the model, now available are ['ru', 'en', 'de', 'es', 'fr']
    Returns a model and a set of utils
    Please see https://github.com/snakers4/silero-models for usage examples
    """
    output_folder = Path(output_folder)
    current_model_lang = default_speaker_dict[language]
    app_logger.info(f"model speaker current_model_lang: {current_model_lang} ...")
    if language in default_speaker_dict:
        model_id = current_model_lang["model_id"]

    models = get_models(language, output_folder, version, model_type="tts_models")
    available_languages = list(models.tts_models.keys())
    assert (
        language in available_languages
    ), f"Language not in the supported list {available_languages}"

    tts_models_lang = models.tts_models[language]
    model_conf = tts_models_lang[model_id]
    model_conf_latest = model_conf[version]
    app_logger.info(f"model_conf: {model_conf_latest} ...")
    if "_v2" in model_id or "_v3" in model_id or "v3_" in model_id or "v4_" in model_id:
        from torch import package

        model_url = model_conf_latest.package
        model_dir = output_folder / "model"
        os.makedirs(model_dir, exist_ok=True)
        model_path = output_folder / os.path.basename(model_url)
        if not os.path.isfile(model_path):
            torch.hub.download_url_to_file(model_url, model_path, progress=True)
        imp = package.PackageImporter(model_path)
        model = imp.load_pickle("tts_models", "model")
        app_logger.info(
            f"current model_conf_latest.sample_rate:{model_conf_latest.sample_rate} ..."
        )
        sample_rate = current_model_lang["sample_rate"]
        return (
            model,
            model_conf_latest.example,
            current_model_lang["speaker"],
            sample_rate,
        )
    else:
        from silero.tts_utils import apply_tts, init_jit_model as init_jit_model_tts

        model = init_jit_model_tts(model_conf_latest.jit)
        symbols = model_conf_latest.tokenset
        example_text = model_conf_latest.example
        sample_rate = model_conf_latest.sample_rate
        return model, symbols, sample_rate, example_text, apply_tts, model_id


def silero_stt(
    language="en",
    version="latest",
    jit_model="jit",
    output_folder: Path | str = None,
    **kwargs,
):
    """Modified Silero Speech-To-Text Model(s) function
    language (str): language of the model, now available are ['en', 'de', 'es']
    version:
    jit_model:
    output_folder: needed in case of docker build
    Returns a model, decoder object and a set of utils
    Please see https://github.com/snakers4/silero-models for usage examples
    """
    from silero.utils import (
        read_audio,
        read_batch,
        split_into_batches,
        prepare_model_input,
    )

    model, decoder = get_latest_model(
        language,
        output_folder,
        version,
        model_type="stt_models",
        jit_model=jit_model,
        **kwargs,
    )
    utils = (read_batch, split_into_batches, read_audio, prepare_model_input)

    return model, decoder, utils


def init_jit_model(
    model_url: str,
    device: torch.device = torch.device("cpu"),
    output_folder: Path | str = None,
):
    torch.set_grad_enabled(False)

    app_logger.info(
        f"model output_folder exists? '{output_folder is None}' => '{output_folder}' ..."
    )
    model_dir = (
        Path(output_folder)
        if output_folder is not None
        else Path(torch.hub.get_dir())
    )
    os.makedirs(model_dir, exist_ok=True)
    app_logger.info(f"downloading the models to model_dir: '{model_dir}' ...")
    model_path = model_dir / os.path.basename(model_url)
    app_logger.info(
        f"model_path exists? '{os.path.isfile(model_path)}' => '{model_path}' ..."
    )

    if not os.path.isfile(model_path):
        app_logger.info(f"downloading model_path: '{model_path}' ...")
        torch.hub.download_url_to_file(model_url, model_path, progress=True)
    app_logger.info(f"model_path {model_path} downloaded!")
    model = torch.jit.load(model_path, map_location=device)
    model.eval()
    return model, Decoder(model.labels)


# second returned type here is the custom class src.silero.utils.Decoder from snakers4/silero-models
def getASRModel(language: str) -> tuple[nn.Module, Decoder]:
    tmp_dir = tempfile.gettempdir()
    if language == "de":
        model, decoder, _ = silero_stt(
            language="de", version="v4", jit_model="jit_large", output_folder=tmp_dir
        )
    elif language == "en":
        model, decoder, _ = silero_stt(language="en", output_folder=tmp_dir)
    else:
        raise NotImplementedError(
            "currenty works only for 'de' and 'en' languages, not for '{}'.".format(
                language
            )
        )

    return model, decoder


def get_models(language, output_folder, version, model_type):
    from omegaconf import OmegaConf

    output_folder = (
        Path(output_folder)
        if output_folder is not None
        else Path(os.path.dirname(__file__)).parent.parent
    )
    models_list_file = output_folder / f"latest_silero_model_{language}.yml"
    if not os.path.exists(models_list_file):
        app_logger.info(
            f"model {model_type} yml for '{language}' language, '{version}' version not found, download it in folder {output_folder}..."
        )
        torch.hub.download_url_to_file(
            "https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml",
            models_list_file,
            progress=False,
        )
    assert os.path.exists(models_list_file)
    return OmegaConf.load(models_list_file)


def get_latest_model(language, output_folder, version, model_type, jit_model, **kwargs):
    models = get_models(language, output_folder, version, model_type)
    available_languages = list(models[model_type].keys())
    assert language in available_languages

    model, decoder = init_jit_model(
        model_url=models[model_type].get(language).get(version).get(jit_model),
        output_folder=output_folder,
        **kwargs,
    )
    return model, decoder