Spaces:
Running
Running
alessandro trinca tornidor
ci: hugginface space, move from docker to gradio sdk v5.6.0, add missing packages.txt with ffmpeg, pre-requirements.txt with pip, update gradio app to properly format informations to frontend, update tests
9ab32d7
import json | |
import os | |
import platform | |
import unittest | |
from aip_trainer import app_logger | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
from tests import EVENTS_FOLDER | |
text_dict = { | |
"de": "Ich bin Alex, wer bist du?", | |
"en": "Hi there, how are you?" | |
} | |
def check_output_by_field(output, key, match, expected_output): | |
import re | |
assert len(output[key].strip()) > 0 | |
for word in output[key].lstrip().rstrip().split(" "): | |
word_check = re.findall(match, word.strip()) | |
assert len(word_check) == 1 | |
assert word_check[0] == word.strip() | |
output[key] = expected_output[key] | |
return output | |
def check_output(self, output, expected_output): | |
self.maxDiff = None | |
try: | |
assert len(output["matched_transcripts"].strip()) > 0 | |
assert len(output["matched_transcripts_ipa"].strip()) > 0 | |
assert len(output["ipa_transcript"].strip()) > 0 | |
assert len(output["real_transcripts_ipa"].strip()) > 0 | |
output = check_output_by_field( | |
output, "is_letter_correct_all_words", "[01]+", expected_output | |
) | |
output = check_output_by_field(output, "end_time", "\d+\.\d+", expected_output) | |
output = check_output_by_field( | |
output, "start_time", "\d+\.\d+", expected_output | |
) | |
output = check_output_by_field( | |
output, "pronunciation_accuracy", "\d+", expected_output | |
) | |
output["matched_transcripts"] = expected_output["matched_transcripts"] | |
output["matched_transcripts_ipa"] = expected_output["matched_transcripts_ipa"] | |
output["pronunciation_accuracy"] = expected_output["pronunciation_accuracy"] | |
output["pair_accuracy_category"] = expected_output["pair_accuracy_category"] | |
output["ipa_transcript"] = expected_output["ipa_transcript"] | |
output["real_transcript"] = expected_output["real_transcript"] | |
output["real_transcripts_ipa"] = expected_output["real_transcripts_ipa"] | |
self.assertDictEqual(expected_output, output) | |
except Exception as e: | |
app_logger.error(f"e:{e}.") | |
raise e | |
class TestGetAccuracyFromRecordedAudio(unittest.TestCase): | |
def setUp(self): | |
if platform.system() == "Windows" or platform.system() == "Win32": | |
os.environ["PYTHONUTF8"] = "1" | |
def tearDown(self): | |
if ( | |
platform.system() == "Windows" or platform.system() == "Win32" | |
) and "PYTHONUTF8" in os.environ: | |
del os.environ["PYTHONUTF8"] | |
def test_GetAccuracyFromRecordedAudio(self): | |
with open(EVENTS_FOLDER / "GetAccuracyFromRecordedAudio.json", "r") as src: | |
inputs_outputs = json.load(src) | |
inputs = inputs_outputs["inputs"] | |
outputs = inputs_outputs["outputs"] | |
for event_name, event_content in inputs.items(): | |
expected_output = outputs[event_name] | |
output = lambdaSpeechToScore.lambda_handler(event_content, []) | |
output = json.loads(output) | |
app_logger.info( | |
f"output type:{type(output)}, expected_output type:{type(expected_output)}." | |
) | |
check_output(self, output, expected_output) | |
def test_get_speech_to_score_en_ok(self): | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "en" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
output = lambdaSpeechToScore.get_speech_to_score_dict( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=path, | |
language=language, | |
remove_random_file=False, | |
) | |
expected_output = { | |
"real_transcript": text_dict[language], | |
"ipa_transcript": "ha\u026a ha\u028a \u0259r ju", | |
"pronunciation_accuracy": "69", | |
"real_transcripts": text_dict[language], | |
"matched_transcripts": "hi - how are you", | |
"real_transcripts_ipa": "ha\u026a \u00f0\u025br, ha\u028a \u0259r ju?", | |
"matched_transcripts_ipa": "ha\u026a ha\u028a \u0259r ju", | |
"pair_accuracy_category": "0 2 0 0 0", | |
"start_time": "0.2245625 1.3228125 0.852125 1.04825 1.3228125", | |
"end_time": "0.559875 1.658125 1.14825 1.344375 1.658125", | |
"is_letter_correct_all_words": "11 000001 111 111 1111 ", | |
} | |
check_output(self, output, expected_output) | |
def test_get_speech_to_score_de_ok(self): | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "de" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
output = lambdaSpeechToScore.get_speech_to_score_dict( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=path, | |
language=language, | |
remove_random_file=False, | |
) | |
expected_output = { | |
"real_transcript": text_dict[language], | |
"ipa_transcript": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u025b\u02d0 b\u025bst\u025b\u02d0 du\u02d0", | |
"pronunciation_accuracy": "63", | |
"real_transcripts": text_dict[language], | |
"matched_transcripts": "ich bin alexwe - beste du", | |
"real_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bks, v\u0250 b\u026ast du\u02d0?", | |
"matched_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u0259 - b\u0259st\u0259 du\u02d0", | |
"pair_accuracy_category": "0 0 2 2 2 0", | |
"start_time": "0.0 0.3075 0.62525 2.1346875 1.5785625 2.1346875", | |
"end_time": "0.328 0.6458125 1.44025 2.4730625 2.15525 2.4730625", | |
"is_letter_correct_all_words": "111 111 11111 000 1011 111 ", | |
} | |
check_output(self, output, expected_output) | |
if __name__ == "__main__": | |
unittest.main() | |