Spaces:
Running
Running
from typing import Union | |
import numpy as np | |
import onnxruntime | |
import torch | |
from faster_whisper import WhisperModel, transcribe | |
from ModelInterfaces import IASRModel | |
from constants import sample_rate_resample, app_logger, IS_TESTING, DEVICE | |
from typing_hints import ParsedWordInfo | |
device = onnxruntime.get_device() | |
device = "cpu" if IS_TESTING or device.lower() == DEVICE.lower() else device | |
app_logger.info(f"device: {device} #") | |
device_compute = "int8_float16" if device == "cuda" else "int8" | |
app_logger.info(f"device: {device}, device_compute: {device_compute} #") | |
def parse_word_info(word_info: transcribe.Word, sample_rate: int) -> ParsedWordInfo: | |
"""Parse a word info object from WhisperModel into a dictionary with start and end timestamps. | |
Args: | |
word_info (transcribe.Word): Word object from WhisperModel.transcribe module | |
sample_rate (int): Sample rate of the audio | |
Returns: | |
ParsedWordInfo: Dictionary with the current single word, start_ts and end_ts keys | |
""" | |
start_ts = float(word_info.start) * sample_rate | |
end_ts = float(word_info.end) * sample_rate | |
word = word_info.word | |
return {"word": word, "start_ts": start_ts, "end_ts": end_ts} | |
class FasterWhisperASRModel(IASRModel): | |
"""Faster Whisper ASR model wrapper class. This class is used to transcribe audio and store the transcript and word locations.""" | |
def __init__(self, model_name:str="base", language:str=None): | |
self.asr = WhisperModel(model_name, device=device, compute_type=device_compute) | |
self._transcript = "" | |
self._word_locations = [] | |
self.sample_rate = sample_rate_resample | |
self.language = language | |
def processAudio(self, audio:Union[np.ndarray, torch.Tensor]) -> None: | |
"""Transcribe audio and store the transcript and word locations updating self._transcript and self._word_locations, | |
get these values using getTranscript() and getWordLocations() respectively. | |
Args: | |
audio (np.ndarray or torch.Tensor): Audio samples to transcribe. | |
Returns: | |
None | |
""" | |
# 'audio' can be a path to a file or a numpy array of audio samples. | |
if isinstance(audio, torch.Tensor): | |
audio = audio.detach().cpu().numpy() | |
segments, info = self.asr.transcribe(audio=audio[0], language=self.language, word_timestamps=True, beam_size=5, temperature=0, vad_filter=True) #, "verbose": True}) | |
app_logger.debug(f"segments: type={type(segments)}, segments complete: {segments} #") | |
app_logger.info(f"info: type={type(info)}, info complete: {info} #") | |
transcript = [] | |
count = 0 | |
for segment in segments: | |
app_logger.debug(f"single segment: {type(segment)}, segment: {segment} #") | |
transcript.append(segment.text) | |
segment_word_locations = [parse_word_info(word_info, sample_rate=self.sample_rate) for word_info in segment.words] | |
self._word_locations.extend(segment_word_locations) | |
app_logger.info(f"elaborated segment {count}: type={type(segment)}, len(words):{len(segment.words)}, text:{segment.text} #") | |
count += 1 | |
app_logger.info(f"transcript: {transcript} #") | |
self._transcript = " ".join(transcript) | |
def getTranscript(self) -> str: | |
"""Get the transcript of the audio.""" | |
return self._transcript | |
def getWordLocations(self) -> list[ParsedWordInfo]: | |
"""Get a list of ParsedWordInfo""" | |
return self._word_locations | |