Spaces:
Running
on
Zero
Running
on
Zero
Delete src/app.py
#1
by
LuigiLui
- opened
- src/app.py +0 -299
src/app.py
DELETED
@@ -1,299 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import pillow_heif
|
5 |
-
import spaces
|
6 |
-
import torch
|
7 |
-
from gradio_imageslider import ImageSlider
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
from PIL import Image
|
10 |
-
from refiners.fluxion.utils import manual_seed
|
11 |
-
from refiners.foundationals.latent_diffusion import Solver, solvers
|
12 |
-
|
13 |
-
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
|
14 |
-
|
15 |
-
pillow_heif.register_heif_opener()
|
16 |
-
pillow_heif.register_avif_opener()
|
17 |
-
|
18 |
-
TITLE = """
|
19 |
-
<center>
|
20 |
-
|
21 |
-
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;">
|
22 |
-
Image Enhancer Powered By Refiners
|
23 |
-
</h1>
|
24 |
-
|
25 |
-
<div style="
|
26 |
-
display: flex;
|
27 |
-
align-items: center;
|
28 |
-
justify-content: center;
|
29 |
-
gap: 0.5rem;
|
30 |
-
margin-bottom: 0.5rem;
|
31 |
-
font-size: 1.25rem;
|
32 |
-
flex-wrap: wrap;
|
33 |
-
">
|
34 |
-
<a href="https://blog.finegrain.ai/posts/reproducing-clarity-upscaler/" target="_blank">[Blog Post]</a>
|
35 |
-
<a href="https://github.com/finegrain-ai/refiners" target="_blank">[Refiners]</a>
|
36 |
-
<a href="https://finegrain.ai/" target="_blank">[Finegrain]</a>
|
37 |
-
<a href="https://huggingface.co/spaces/finegrain/finegrain-object-eraser" target="_blank">
|
38 |
-
[Finegrain Object Eraser]
|
39 |
-
</a>
|
40 |
-
<a href="https://huggingface.co/spaces/finegrain/finegrain-object-cutter" target="_blank">
|
41 |
-
[Finegrain Object Cutter]
|
42 |
-
</a>
|
43 |
-
</div>
|
44 |
-
|
45 |
-
<p>
|
46 |
-
Turn low resolution images into high resolution versions with added generated details (your image will be modified).
|
47 |
-
</p>
|
48 |
-
|
49 |
-
<p>
|
50 |
-
This space is powered by Refiners, our open source micro-framework for simple foundation model adaptation.
|
51 |
-
If you enjoyed it, please consider starring Refiners on GitHub!
|
52 |
-
</p>
|
53 |
-
|
54 |
-
<a href="https://github.com/finegrain-ai/refiners" target="_blank">
|
55 |
-
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" />
|
56 |
-
</a>
|
57 |
-
|
58 |
-
</center>
|
59 |
-
"""
|
60 |
-
|
61 |
-
CHECKPOINTS = ESRGANUpscalerCheckpoints(
|
62 |
-
unet=Path(
|
63 |
-
hf_hub_download(
|
64 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
|
65 |
-
filename="model.safetensors",
|
66 |
-
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
|
67 |
-
)
|
68 |
-
),
|
69 |
-
clip_text_encoder=Path(
|
70 |
-
hf_hub_download(
|
71 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
|
72 |
-
filename="model.safetensors",
|
73 |
-
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
|
74 |
-
)
|
75 |
-
),
|
76 |
-
lda=Path(
|
77 |
-
hf_hub_download(
|
78 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
|
79 |
-
filename="model.safetensors",
|
80 |
-
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
|
81 |
-
)
|
82 |
-
),
|
83 |
-
controlnet_tile=Path(
|
84 |
-
hf_hub_download(
|
85 |
-
repo_id="refiners/controlnet.sd1_5.tile",
|
86 |
-
filename="model.safetensors",
|
87 |
-
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
|
88 |
-
)
|
89 |
-
),
|
90 |
-
esrgan=Path(
|
91 |
-
hf_hub_download(
|
92 |
-
repo_id="philz1337x/upscaler",
|
93 |
-
filename="4x-UltraSharp.pth",
|
94 |
-
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
|
95 |
-
)
|
96 |
-
),
|
97 |
-
negative_embedding=Path(
|
98 |
-
hf_hub_download(
|
99 |
-
repo_id="philz1337x/embeddings",
|
100 |
-
filename="JuggernautNegative-neg.pt",
|
101 |
-
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
|
102 |
-
)
|
103 |
-
),
|
104 |
-
negative_embedding_key="string_to_param.*",
|
105 |
-
loras={
|
106 |
-
"more_details": Path(
|
107 |
-
hf_hub_download(
|
108 |
-
repo_id="philz1337x/loras",
|
109 |
-
filename="more_details.safetensors",
|
110 |
-
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
111 |
-
)
|
112 |
-
),
|
113 |
-
"sdxl_render": Path(
|
114 |
-
hf_hub_download(
|
115 |
-
repo_id="philz1337x/loras",
|
116 |
-
filename="SDXLrender_v2.0.safetensors",
|
117 |
-
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
118 |
-
)
|
119 |
-
),
|
120 |
-
},
|
121 |
-
)
|
122 |
-
|
123 |
-
# initialize the enhancer, on the cpu
|
124 |
-
DEVICE_CPU = torch.device("cpu")
|
125 |
-
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
126 |
-
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)
|
127 |
-
|
128 |
-
# "move" the enhancer to the gpu, this is handled by Zero GPU
|
129 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
130 |
-
enhancer.to(device=DEVICE, dtype=DTYPE)
|
131 |
-
|
132 |
-
|
133 |
-
@spaces.GPU
|
134 |
-
def process(
|
135 |
-
input_image: Image.Image,
|
136 |
-
prompt: str = "masterpiece, best quality, highres",
|
137 |
-
negative_prompt: str = "worst quality, low quality, normal quality",
|
138 |
-
seed: int = 42,
|
139 |
-
upscale_factor: int = 2,
|
140 |
-
controlnet_scale: float = 0.6,
|
141 |
-
controlnet_decay: float = 1.0,
|
142 |
-
condition_scale: int = 6,
|
143 |
-
tile_width: int = 112,
|
144 |
-
tile_height: int = 144,
|
145 |
-
denoise_strength: float = 0.35,
|
146 |
-
num_inference_steps: int = 18,
|
147 |
-
solver: str = "DDIM",
|
148 |
-
) -> tuple[Image.Image, Image.Image]:
|
149 |
-
manual_seed(seed)
|
150 |
-
|
151 |
-
solver_type: type[Solver] = getattr(solvers, solver)
|
152 |
-
|
153 |
-
enhanced_image = enhancer.upscale(
|
154 |
-
image=input_image,
|
155 |
-
prompt=prompt,
|
156 |
-
negative_prompt=negative_prompt,
|
157 |
-
upscale_factor=upscale_factor,
|
158 |
-
controlnet_scale=controlnet_scale,
|
159 |
-
controlnet_scale_decay=controlnet_decay,
|
160 |
-
condition_scale=condition_scale,
|
161 |
-
tile_size=(tile_height, tile_width),
|
162 |
-
denoise_strength=denoise_strength,
|
163 |
-
num_inference_steps=num_inference_steps,
|
164 |
-
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
|
165 |
-
solver_type=solver_type,
|
166 |
-
)
|
167 |
-
|
168 |
-
return (input_image, enhanced_image)
|
169 |
-
|
170 |
-
|
171 |
-
with gr.Blocks() as demo:
|
172 |
-
gr.HTML(TITLE)
|
173 |
-
|
174 |
-
with gr.Row():
|
175 |
-
with gr.Column():
|
176 |
-
input_image = gr.Image(type="pil", label="Input Image")
|
177 |
-
run_button = gr.ClearButton(components=None, value="Enhance Image")
|
178 |
-
with gr.Column():
|
179 |
-
output_slider = ImageSlider(label="Before / After")
|
180 |
-
run_button.add(output_slider)
|
181 |
-
|
182 |
-
with gr.Accordion("Advanced Options", open=False):
|
183 |
-
prompt = gr.Textbox(
|
184 |
-
label="Prompt",
|
185 |
-
placeholder="masterpiece, best quality, highres",
|
186 |
-
)
|
187 |
-
negative_prompt = gr.Textbox(
|
188 |
-
label="Negative Prompt",
|
189 |
-
placeholder="worst quality, low quality, normal quality",
|
190 |
-
)
|
191 |
-
seed = gr.Slider(
|
192 |
-
minimum=0,
|
193 |
-
maximum=10_000,
|
194 |
-
value=42,
|
195 |
-
step=1,
|
196 |
-
label="Seed",
|
197 |
-
)
|
198 |
-
upscale_factor = gr.Slider(
|
199 |
-
minimum=1,
|
200 |
-
maximum=4,
|
201 |
-
value=2,
|
202 |
-
step=0.2,
|
203 |
-
label="Upscale Factor",
|
204 |
-
)
|
205 |
-
controlnet_scale = gr.Slider(
|
206 |
-
minimum=0,
|
207 |
-
maximum=1.5,
|
208 |
-
value=0.6,
|
209 |
-
step=0.1,
|
210 |
-
label="ControlNet Scale",
|
211 |
-
)
|
212 |
-
controlnet_decay = gr.Slider(
|
213 |
-
minimum=0.5,
|
214 |
-
maximum=1,
|
215 |
-
value=1.0,
|
216 |
-
step=0.025,
|
217 |
-
label="ControlNet Scale Decay",
|
218 |
-
)
|
219 |
-
condition_scale = gr.Slider(
|
220 |
-
minimum=2,
|
221 |
-
maximum=20,
|
222 |
-
value=6,
|
223 |
-
step=1,
|
224 |
-
label="Condition Scale",
|
225 |
-
)
|
226 |
-
tile_width = gr.Slider(
|
227 |
-
minimum=64,
|
228 |
-
maximum=200,
|
229 |
-
value=112,
|
230 |
-
step=1,
|
231 |
-
label="Latent Tile Width",
|
232 |
-
)
|
233 |
-
tile_height = gr.Slider(
|
234 |
-
minimum=64,
|
235 |
-
maximum=200,
|
236 |
-
value=144,
|
237 |
-
step=1,
|
238 |
-
label="Latent Tile Height",
|
239 |
-
)
|
240 |
-
denoise_strength = gr.Slider(
|
241 |
-
minimum=0,
|
242 |
-
maximum=1,
|
243 |
-
value=0.35,
|
244 |
-
step=0.1,
|
245 |
-
label="Denoise Strength",
|
246 |
-
)
|
247 |
-
num_inference_steps = gr.Slider(
|
248 |
-
minimum=1,
|
249 |
-
maximum=30,
|
250 |
-
value=18,
|
251 |
-
step=1,
|
252 |
-
label="Number of Inference Steps",
|
253 |
-
)
|
254 |
-
solver = gr.Radio(
|
255 |
-
choices=["DDIM", "DPMSolver"],
|
256 |
-
value="DDIM",
|
257 |
-
label="Solver",
|
258 |
-
)
|
259 |
-
|
260 |
-
run_button.click(
|
261 |
-
fn=process,
|
262 |
-
inputs=[
|
263 |
-
input_image,
|
264 |
-
prompt,
|
265 |
-
negative_prompt,
|
266 |
-
seed,
|
267 |
-
upscale_factor,
|
268 |
-
controlnet_scale,
|
269 |
-
controlnet_decay,
|
270 |
-
condition_scale,
|
271 |
-
tile_width,
|
272 |
-
tile_height,
|
273 |
-
denoise_strength,
|
274 |
-
num_inference_steps,
|
275 |
-
solver,
|
276 |
-
],
|
277 |
-
outputs=output_slider,
|
278 |
-
)
|
279 |
-
|
280 |
-
gr.Examples(
|
281 |
-
examples=[
|
282 |
-
"examples/kara-eads-L7EwHkq1B2s-unsplash.jpg",
|
283 |
-
"examples/clarity_bird.webp",
|
284 |
-
"examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg",
|
285 |
-
"examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg",
|
286 |
-
"examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg",
|
287 |
-
"examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg",
|
288 |
-
"examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg",
|
289 |
-
"examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg",
|
290 |
-
"examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg",
|
291 |
-
],
|
292 |
-
inputs=[input_image],
|
293 |
-
outputs=output_slider,
|
294 |
-
fn=process,
|
295 |
-
cache_examples="lazy",
|
296 |
-
run_on_click=False,
|
297 |
-
)
|
298 |
-
|
299 |
-
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|