File size: 6,123 Bytes
507a14d
 
9ceb843
e5d5995
8e499f4
9ceb843
 
507a14d
 
 
 
 
7b96731
 
 
9ceb843
 
 
e5d5995
7b96731
507a14d
 
9ceb843
 
 
e4cd4cd
9ceb843
 
507a14d
 
 
9ceb843
 
 
 
 
 
 
 
 
 
 
 
 
e5d5995
9ceb843
 
 
35e2ca1
90eea3b
35e2ca1
 
e5d5995
9ceb843
 
e5d5995
9ceb843
35e2ca1
 
 
e5d5995
9ceb843
 
 
 
507a14d
9ceb843
 
 
 
507a14d
9ceb843
 
 
 
507a14d
8e499f4
 
e5d5995
 
 
 
 
 
 
 
 
 
 
 
35e2ca1
8e499f4
 
e5d5995
 
507a14d
9ceb843
507a14d
9ceb843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e499f4
 
 
 
 
e5d5995
8e499f4
 
 
 
 
e5d5995
8e499f4
9ceb843
8e499f4
e5d5995
 
 
 
 
 
 
 
 
9ceb843
e5d5995
 
 
9ceb843
507a14d
e5d5995
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import os
from huggingface_hub import HfApi, snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datasets import load_dataset
from src.utils import load_all_data
from src.md import ABOUT_TEXT
import numpy as np

api = HfApi()

COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
evals_repo = "ai2-adapt-dev/rm-benchmark-results"
prefs_repo = "ai2-adapt-dev/rm-testset-results"
eval_set_repo = "ai2-adapt-dev/rm-benchmark-dev"
repo_dir_herm = "./evals/herm/"
repo_dir_prefs = "./evals/prefs/"

def restart_space():
    api.restart_space(repo_id="ai2-adapt-dev/rm-benchmark-viewer", token=COLLAB_TOKEN)

print("Pulling evaluation results")
repo = snapshot_download(
    local_dir=repo_dir_herm,
    repo_id=evals_repo,
    use_auth_token=COLLAB_TOKEN,
    tqdm_class=None, 
    etag_timeout=30,
    repo_type="dataset",
)

repo_pref_sets = snapshot_download(
    local_dir=repo_dir_prefs,
    repo_id=prefs_repo,
    use_auth_token=COLLAB_TOKEN,
    tqdm_class=None, 
    etag_timeout=30,
    repo_type="dataset",
)

def avg_over_herm(dataframe):
    """
    Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
    """
    new_df = dataframe.copy()
    subsets = ["alpacaeval", "mt-bench", "llmbar", "refusals", "hep"]
    # for each subset, avg the columns that have the subset in the column name, then add a new column with subset name and avg
    for subset in subsets:
        if subset == "refusals":
            subset_cols = ["refusals-dangerous", "refusals-offensive", "donotanswer","xstest-should-refuse", "xstest-should-respond"]
        else:
            subset_cols = [col for col in new_df.columns if subset in col]
        new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)

    keep_columns = ["model", "average"] + subsets
    new_df = new_df[keep_columns]
    # replace average column with new average
    new_df["average"] = np.round(np.nanmean(new_df[subsets].values, axis=1), 2)
    # rename column "hep" to "hep (code)"
    new_df = new_df.rename(columns={"hep": "hep (code)"})        
    return new_df

def expand_subsets(dataframe):
    # TODO need to modify data/ script to do this
    pass
    
herm_data = load_all_data(repo_dir_herm).sort_values(by='average', ascending=False)
herm_data_avg = avg_over_herm(herm_data).sort_values(by='average', ascending=False)
prefs_data = load_all_data(repo_dir_prefs).sort_values(by='average', ascending=False)
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)

col_types_herm = ["markdown"] + ["number"] * (len(herm_data.columns) - 1)
col_types_herm_avg = ["markdown"] + ["number"] * (len(herm_data_avg.columns) - 1)
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)

# for showing random samples
eval_set = load_dataset(eval_set_repo, use_auth_token=COLLAB_TOKEN, split="filtered")
def random_sample(r: gr.Request, subset):
    if subset is None or subset == []:
        sample_index = np.random.randint(0, len(eval_set) - 1)
        sample = eval_set[sample_index]
    else: # filter by subsets (can be list)
        if isinstance(subset, str):
            subset = [subset]
        # filter down dataset to only include the subset(s)
        eval_set_filtered = eval_set.filter(lambda x: x["subset"] in subset)
        sample_index = np.random.randint(0, len(eval_set_filtered) - 1)
        sample = eval_set_filtered[sample_index]

    markdown_text = '\n\n'.join([f"**{key}**:\n{value}" for key, value in sample.items()])
    return markdown_text

subsets = eval_set.unique("subset")

with gr.Blocks() as app:
    # create tabs for the app, moving the current table to one titled "HERM" and the benchmark_text to a tab called "About"
    with gr.Row():
        gr.Markdown("# HERM Results Viewer")
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("HERM - Overview"):
            with gr.Row():
                herm_table = gr.Dataframe(
                    herm_data_avg.values,
                    datatype=col_types_herm_avg,
                    headers=herm_data_avg.columns.tolist(),
                    elem_id="herm_dataframe_avg",
                )
        with gr.TabItem("HERM - Detailed"):
            with gr.Row():
                herm_table = gr.Dataframe(
                    herm_data.values,
                    datatype=col_types_herm,
                    headers=herm_data.columns.tolist(),
                    elem_id="herm_dataframe",
                )
        with gr.TabItem("Pref Sets - Overview"):
                pref_sets_table = gr.Dataframe(
                    prefs_data.values,
                    datatype=col_types_prefs,
                    headers=prefs_data.columns.tolist(),
                    elem_id="prefs_dataframe",
                )

        with gr.TabItem("About"):
            with gr.Row():
                gr.Markdown(ABOUT_TEXT)

        with gr.TabItem("Dataset Viewer"):
            with gr.Row():
                # loads one sample
                gr.Markdown("## Random Dataset Sample Viewer")
                subset_selector = gr.Dropdown(subsets, label="Subset", value=None, multiselect=True)
                button = gr.Button("Show Random Sample")

            with gr.Row():
                sample_display = gr.Markdown("{sampled data loads here}")

            button.click(fn=random_sample, inputs=[subset_selector], outputs=[sample_display])

                
# Load data when app starts, TODO make this used somewhere...
# def load_data_on_start():
#     data_herm = load_all_data(repo_dir_herm)
#     herm_table.update(data_herm)

#     data_herm_avg = avg_over_herm(repo_dir_herm)
#     herm_table.update(data_herm_avg)

#     data_prefs = load_all_data(repo_dir_prefs)
#     pref_sets_table.update(data_prefs)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h
scheduler.start()


app.queue().launch()