equation
Browse files- index.html +12 -12
index.html
CHANGED
@@ -39,7 +39,7 @@
|
|
39 |
e.preventDefault();
|
40 |
if (!$(this).hasClass('selected')) {
|
41 |
|
42 |
-
$('.
|
43 |
$('.formula-list > a').removeClass('selected');
|
44 |
$(this).addClass('selected');
|
45 |
var target = $(this).attr('href');
|
@@ -420,8 +420,8 @@
|
|
420 |
<div class="column container formula">
|
421 |
<p>
|
422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
423 |
-
and the detection strategy. For an SSL model with a feature extractor
|
424 |
-
the classification branch can be formulated as
|
425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
426 |
</div>
|
427 |
</div>
|
@@ -436,19 +436,19 @@
|
|
436 |
<div style="clear: both"></div>
|
437 |
</div>
|
438 |
<div class="row align-items-center adaptive-loss-formula-content>
|
439 |
-
<span class="formula label-loss" style="">
|
440 |
$$
|
441 |
\displaystyle
|
442 |
Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
|
443 |
$$
|
444 |
</span>
|
445 |
-
<span class="formula representation-loss" style="display: none;">
|
446 |
$$
|
447 |
\displaystyle
|
448 |
Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
|
449 |
$$
|
450 |
</span>
|
451 |
-
<span class="formula total-loss" style="display: none;">
|
452 |
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
|
453 |
</span>
|
454 |
</div>
|
@@ -458,15 +458,15 @@
|
|
458 |
|
459 |
<div class="columns is-centered">
|
460 |
<div class="column container adaptive-loss-formula-content">
|
461 |
-
<p class="formula label-loss">
|
462 |
-
where
|
463 |
</p>
|
464 |
-
<p class="formula representation-loss" style="display: none">
|
465 |
-
where
|
466 |
</p>
|
467 |
|
468 |
-
<p class="formula total-loss" style="display: none;">
|
469 |
-
where
|
470 |
</p>
|
471 |
</div>
|
472 |
</div>
|
|
|
39 |
e.preventDefault();
|
40 |
if (!$(this).hasClass('selected')) {
|
41 |
|
42 |
+
$('.formula-content').hide(200);
|
43 |
$('.formula-list > a').removeClass('selected');
|
44 |
$(this).addClass('selected');
|
45 |
var target = $(this).attr('href');
|
|
|
420 |
<div class="column container formula">
|
421 |
<p>
|
422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
423 |
+
and the detection strategy. For an SSL model with a feature extractor `f`, a projector `h`, and a classification head `g`,
|
424 |
+
the classification branch can be formulated as `\mathbb{C} = f\circ g` and the representation branch as `\mathbb{R} = f\circ h`.
|
425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
426 |
</div>
|
427 |
</div>
|
|
|
436 |
<div style="clear: both"></div>
|
437 |
</div>
|
438 |
<div class="row align-items-center adaptive-loss-formula-content>
|
439 |
+
<span class="formula label-loss formula-content" style="">
|
440 |
$$
|
441 |
\displaystyle
|
442 |
Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
|
443 |
$$
|
444 |
</span>
|
445 |
+
<span class="formula representation-loss formula-content" style="display: none;">
|
446 |
$$
|
447 |
\displaystyle
|
448 |
Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
|
449 |
$$
|
450 |
</span>
|
451 |
+
<span class="formula total-loss formula-content" style="display: none;">
|
452 |
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
|
453 |
</span>
|
454 |
</div>
|
|
|
458 |
|
459 |
<div class="columns is-centered">
|
460 |
<div class="column container adaptive-loss-formula-content">
|
461 |
+
<p class="formula label-loss formula-content">
|
462 |
+
where `k` represents the number of generated neighbors, `y_t` is the target class, and `\mathcal{L}` is the cross entropy loss function.
|
463 |
</p>
|
464 |
+
<p class="formula representation-loss formula-content" style="display: none">
|
465 |
+
where `k` represents the number of generated neighbors, and `mathcal{S}` is the cosine similarity.
|
466 |
</p>
|
467 |
|
468 |
+
<p class="formula total-loss formula-content" style="display: none;">
|
469 |
+
where `\mathcal{L}_C` indicates classifier's loss function, `y_t` is the targeted class, and `\alpha` refers to a hyperparameter.
|
470 |
</p>
|
471 |
</div>
|
472 |
</div>
|