Spaces:
Sleeping
Sleeping
File size: 1,201 Bytes
c9dff70 4ef2b90 c9dff70 4ef2b90 a373624 4ef2b90 a373624 8618cef 4ef2b90 c9dff70 4ef2b90 c9dff70 4ef2b90 a373624 4ef2b90 a373624 4ef2b90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
import pandas as pd
import joblib
from huggingface_hub import hf_hub_download
model = joblib.load(hf_hub_download(repo_id="alperugurcan/mercedes", filename="mercedes_model.joblib"))
feature_names = joblib.load(hf_hub_download(repo_id="alperugurcan/mercedes", filename="feature_names.joblib"))
CONFIGS = {
"z (360 cases)": "z",
"ak (349 cases)": "ak",
"y (324 cases)": "y",
"ay (313 cases)": "ay",
"t (306 cases)": "t",
"x (300 cases)": "x",
"o (269 cases)": "o",
"f (227 cases)": "f",
"n (195 cases)": "n",
"w (182 cases)": "w"
}
def predict(option):
input_data = {name: 0.0 for name in feature_names}
input_data[f'X0_{CONFIGS[option]}'] = 1.0
prediction = model.predict(pd.DataFrame([input_data]))[0]
return f"Predicted manufacturing time: {prediction:.2f} seconds"
gr.Interface(
fn=predict,
inputs=gr.Dropdown(choices=list(CONFIGS.keys()), label="Manufacturing Configuration"),
outputs=gr.Textbox(label="Prediction"),
title="Mercedes-Benz Manufacturing Time Predictor",
description="Select a manufacturing configuration to predict production time.",
theme=gr.themes.Soft()
).launch(debug=True) |