Spaces:
Runtime error
Runtime error
import json | |
import random | |
import requests | |
import os | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, LCMScheduler | |
def get_image(image_data): | |
if isinstance(image_data, str): | |
return image_data | |
if isinstance(image_data, dict): | |
local_path = image_data.get('local_path') | |
hf_url = image_data.get('hf_url') | |
else: | |
print(f"Unexpected image_data format: {type(image_data)}") | |
return None | |
if local_path and os.path.exists(local_path): | |
try: | |
Image.open(local_path).verify() | |
return local_path | |
except Exception as e: | |
print(f"Error loading local image {local_path}: {e}") | |
if hf_url: | |
try: | |
response = requests.get(hf_url) | |
if response.status_code == 200: | |
img = Image.open(requests.get(hf_url, stream=True).raw) | |
img.verify() | |
img.save(local_path) | |
return local_path | |
else: | |
print(f"Failed to fetch image from URL {hf_url}. Status code: {response.status_code}") | |
except Exception as e: | |
print(f"Error loading image from URL {hf_url}: {e}") | |
print(f"Failed to load image for {image_data}") | |
return None | |
with open("sdxl_lora.json", "r") as file: | |
data = json.load(file) | |
sdxl_loras_raw = [ | |
{ | |
"image": get_image(item["image"]), | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item["trigger_word"], | |
"weights": item["weights"], | |
"is_pivotal": item.get("is_pivotal", False), | |
"text_embedding_weights": item.get("text_embedding_weights", None), | |
"likes": item.get("likes", 0), | |
} | |
for item in data | |
] | |
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True) | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16") | |
# Create LCMScheduler with default config | |
lcm_scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# Remove the 'skip_prk_steps' if it exists in the config | |
if hasattr(lcm_scheduler.config, 'skip_prk_steps'): | |
delattr(lcm_scheduler.config, 'skip_prk_steps') | |
pipe.scheduler = lcm_scheduler | |
pipe.to(device=DEVICE, dtype=torch.float16) | |
# Load Flash SDXL LoRA | |
flash_sdxl_id = "jasperai/flash-sdxl" | |
pipe.load_lora_weights(flash_sdxl_id, adapter_name="flash_lora") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def update_selection(selected_state: gr.SelectData, gr_sdxl_loras): | |
lora_id = gr_sdxl_loras[selected_state.index]["repo"] | |
trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"] | |
return lora_id, trigger_word | |
def infer( | |
pre_prompt, | |
prompt, | |
seed, | |
randomize_seed, | |
num_inference_steps, | |
negative_prompt, | |
guidance_scale, | |
user_lora_selector, | |
user_lora_weight, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
try: | |
# Load the user-selected LoRA | |
new_adapter_id = user_lora_selector.replace("/", "_") | |
pipe.load_lora_weights(user_lora_selector, adapter_name=new_adapter_id) | |
# Set adapter weights | |
pipe.set_adapters(["flash_lora", new_adapter_id], adapter_weights=[1.0, user_lora_weight]) | |
gr.Info("LoRA setup complete") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if pre_prompt != "": | |
prompt = f"{pre_prompt} {prompt}" | |
# Use Flash Diffusion settings | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=1.0, # Flash Diffusion typically uses guidance_scale=1 | |
num_inference_steps=4, # Flash Diffusion uses fewer steps | |
generator=generator, | |
).images[0] | |
return image | |
except Exception as e: | |
gr.Error(f"An error occurred: {str(e)}") | |
return None | |
css = """ | |
h1 { | |
text-align: center; | |
display:block; | |
} | |
p { | |
text-align: justify; | |
display:block; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
f""" | |
# β‘ FlashDiffusion: FlashLoRA β‘ | |
This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) **on top of** existing LoRAs. | |
The distillation method proposed in [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by ClΓ©ment Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin* from Jasper Research. | |
The LoRAs can be added **without** any retraining for similar results in most cases. Feel free to tweak the parameters and use your own LoRAs by giving a look at the [Github Repo](https://github.com/gojasper/flash-diffusion) | |
""" | |
) | |
gr.Markdown( | |
"If you enjoy the space, please also promote *open-source* by giving a β to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/flash-diffusion?style=social)](https://github.com/gojasper/flash-diffusion)" | |
) | |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw) | |
gr_lora_id = gr.State(value="") | |
with gr.Row(): | |
with gr.Blocks(): | |
with gr.Column(): | |
user_lora_selector = gr.Textbox( | |
label="Current Selected LoRA", | |
max_lines=1, | |
interactive=False, | |
) | |
user_lora_weight = gr.Slider( | |
label="Selected LoRA Weight", | |
minimum=0.5, | |
maximum=3, | |
step=0.1, | |
value=1, | |
) | |
gallery = gr.Gallery( | |
value=[(item["image"], item["title"]) for item in sdxl_loras_raw], | |
label="SDXL LoRA Gallery", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery", | |
show_share_button=False, | |
) | |
with gr.Column(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
scale=5, | |
) | |
run_button = gr.Button("Run", scale=1) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
pre_prompt = gr.Text( | |
label="Pre-Prompt", | |
show_label=True, | |
max_lines=1, | |
placeholder="Pre Prompt from the LoRA config", | |
container=True, | |
scale=5, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=4, | |
maximum=8, | |
step=1, | |
value=4, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=6, | |
step=0.5, | |
value=1, | |
) | |
hint_negative = gr.Markdown( | |
"""π‘ _Hint : Negative Prompt will only work with Guidance > 1 but the model was | |
trained to be used with guidance = 1 (ie. without guidance). | |
Can degrade the results, use cautiously._""" | |
) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter a negative Prompt", | |
container=False, | |
) | |
gr.on( | |
[ | |
run_button.click, | |
seed.change, | |
randomize_seed.change, | |
prompt.submit, | |
negative_prompt.change, | |
negative_prompt.submit, | |
guidance_scale.change, | |
], | |
fn=infer, | |
inputs=[ | |
pre_prompt, | |
prompt, | |
seed, | |
randomize_seed, | |
num_inference_steps, | |
negative_prompt, | |
guidance_scale, | |
user_lora_selector, | |
user_lora_weight, | |
], | |
outputs=[result], | |
) | |
gallery.select( | |
fn=update_selection, | |
inputs=[gr_sdxl_loras], | |
outputs=[ | |
user_lora_selector, | |
pre_prompt, | |
], | |
show_progress="hidden", | |
) | |
gr.Markdown("**Disclaimer:**") | |
gr.Markdown( | |
"This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards." | |
) | |
demo.queue().launch() |