Spaces:
Sleeping
Sleeping
""" Global Context Attention Block | |
Paper: `GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond` | |
- https://arxiv.org/abs/1904.11492 | |
Official code consulted as reference: https://github.com/xvjiarui/GCNet | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
from torch import nn as nn | |
import torch.nn.functional as F | |
from .create_act import create_act_layer, get_act_layer | |
from .helpers import make_divisible | |
from .mlp import ConvMlp | |
from .norm import LayerNorm2d | |
class GlobalContext(nn.Module): | |
def __init__(self, channels, use_attn=True, fuse_add=True, fuse_scale=False, init_last_zero=False, | |
rd_ratio=1./8, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid'): | |
super(GlobalContext, self).__init__() | |
act_layer = get_act_layer(act_layer) | |
self.conv_attn = nn.Conv2d(channels, 1, kernel_size=1, bias=True) if use_attn else None | |
if rd_channels is None: | |
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) | |
if fuse_add: | |
self.mlp_add = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) | |
else: | |
self.mlp_add = None | |
if fuse_scale: | |
self.mlp_scale = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) | |
else: | |
self.mlp_scale = None | |
self.gate = create_act_layer(gate_layer) | |
self.init_last_zero = init_last_zero | |
self.reset_parameters() | |
def reset_parameters(self): | |
if self.conv_attn is not None: | |
nn.init.kaiming_normal_(self.conv_attn.weight, mode='fan_in', nonlinearity='relu') | |
if self.mlp_add is not None: | |
nn.init.zeros_(self.mlp_add.fc2.weight) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
if self.conv_attn is not None: | |
attn = self.conv_attn(x).reshape(B, 1, H * W) # (B, 1, H * W) | |
attn = F.softmax(attn, dim=-1).unsqueeze(3) # (B, 1, H * W, 1) | |
context = x.reshape(B, C, H * W).unsqueeze(1) @ attn | |
context = context.view(B, C, 1, 1) | |
else: | |
context = x.mean(dim=(2, 3), keepdim=True) | |
if self.mlp_scale is not None: | |
mlp_x = self.mlp_scale(context) | |
x = x * self.gate(mlp_x) | |
if self.mlp_add is not None: | |
mlp_x = self.mlp_add(context) | |
x = x + mlp_x | |
return x | |