|
from datasets import load_dataset |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments |
|
|
|
|
|
dataset = load_dataset("json", data_files="dataset.jsonl") |
|
|
|
|
|
model_name = "Salesforce/codegen-2B-multi" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["input"], text_target=examples["output"], truncation=True) |
|
|
|
tokenized_dataset = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
overwrite_output_dir=True, |
|
evaluation_strategy="epoch", |
|
learning_rate=5e-5, |
|
per_device_train_batch_size=4, |
|
num_train_epochs=3, |
|
save_strategy="epoch", |
|
logging_dir="./logs", |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["train"], |
|
) |
|
|
|
trainer.train() |
|
trainer.save_model("./fine_tuned_codegen") |
|
tokenizer.save_pretrained("./fine_tuned_codegen") |
|
print("Training complete. Model saved.") |