FRN / dataset.py
anhnv125's picture
Update dataset.py
dc58348
raw
history blame
8.09 kB
import glob
import os
import random
import librosa
import numpy as np
import soundfile as sf
import torch
from numpy.random import default_rng
from pydtmc import MarkovChain
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from config import CONFIG
np.random.seed(0)
rng = default_rng()
def load_audio(
path,
sample_rate: int = 16000,
chunk_len=None,
):
with sf.SoundFile(path) as f:
sr = f.samplerate
audio_len = f.frames
if chunk_len is not None and chunk_len < audio_len:
start_index = torch.randint(0, audio_len - chunk_len, (1,))[0]
frames = f._prepare_read(start_index, start_index + chunk_len, -1)
audio = f.read(frames, always_2d=True, dtype="float32")
else:
audio = f.read(always_2d=True, dtype="float32")
if sr != sample_rate:
audio = librosa.resample(np.squeeze(audio), sr, sample_rate)[:, np.newaxis]
return audio.T
def pad(sig, length):
if sig.shape[1] < length:
pad_len = length - sig.shape[1]
sig = torch.hstack((sig, torch.zeros((sig.shape[0], pad_len))))
else:
start = random.randint(0, sig.shape[1] - length)
sig = sig[:, start:start + length]
return sig
class MaskGenerator:
def __init__(self, is_train=True, probs=((0.9, 0.1), (0.5, 0.1), (0.5, 0.5))):
'''
is_train: if True, mask generator for training otherwise for evaluation
probs: a list of transition probability (p_N, p_L) for Markov Chain. Only allow 1 tuple if 'is_train=False'
'''
self.is_train = is_train
self.probs = probs
self.mcs = []
if self.is_train:
for prob in probs:
self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))
else:
assert len(probs) == 1
prob = self.probs[0]
self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))
def gen_mask(self, length, seed=0):
if self.is_train:
mc = random.choice(self.mcs)
else:
mc = self.mcs[0]
mask = mc.walk(length - 1, seed=seed)
mask = np.array(list(map(int, mask)))
return mask
class TestLoader(Dataset):
def __init__(self):
dataset_name = CONFIG.DATA.dataset
self.mask = CONFIG.DATA.EVAL.masking
self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']
txt_list = CONFIG.DATA.data_dir[dataset_name]['test']
self.data_list = self.load_txt(txt_list)
if self.mask == 'real':
trace_txt = glob.glob(os.path.join(CONFIG.DATA.EVAL.trace_path, '*.txt'))
trace_txt.sort()
self.trace_list = [1 - np.array(list(map(int, open(txt, 'r').read().strip('\n').split('\n')))) for txt in
trace_txt]
else:
self.mask_generator = MaskGenerator(is_train=False, probs=CONFIG.DATA.EVAL.transition_probs)
self.sr = CONFIG.DATA.sr
self.stride = CONFIG.DATA.stride
self.window_size = CONFIG.DATA.window_size
self.audio_chunk_len = CONFIG.DATA.audio_chunk_len
self.p_size = CONFIG.DATA.EVAL.packet_size # 20ms
self.hann = torch.sqrt(torch.hann_window(self.window_size))
def __len__(self):
return len(self.data_list)
def load_txt(self, txt_list):
target = []
with open(txt_list) as f:
for line in f:
target.append(os.path.join(self.target_root, line.strip('\n')))
target = list(set(target))
target.sort()
return target
def __getitem__(self, index):
target = load_audio(self.data_list[index], sample_rate=self.sr)
target = target[:, :(target.shape[1] // self.p_size) * self.p_size]
sig = np.reshape(target, (-1, self.p_size)).copy()
if self.mask == 'real':
mask = self.trace_list[index % len(self.trace_list)]
mask = np.repeat(mask, np.ceil(len(sig) / len(mask)), 0)[:len(sig)][:, np.newaxis]
else:
mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
sig *= mask
sig = torch.tensor(sig).reshape(-1)
target = torch.tensor(target).squeeze(0)
sig_wav = sig.clone()
target_wav = target.clone()
target = torch.stft(target, self.window_size, self.stride, window=self.hann,
return_complex=False).permute(2, 0, 1)
sig = torch.stft(sig, self.window_size, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
return sig.float(), target.float(), sig_wav, target_wav
class BlindTestLoader(Dataset):
def __init__(self, test_dir):
self.data_list = glob.glob(os.path.join(test_dir, '*.wav'))
self.sr = CONFIG.DATA.sr
self.stride = CONFIG.DATA.stride
self.chunk_len = CONFIG.DATA.window_size
self.hann = torch.sqrt(torch.hann_window(self.chunk_len))
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
sig = load_audio(self.data_list[index], sample_rate=self.sr)
sig = torch.from_numpy(sig).squeeze(0)
sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
return sig.float()
class TrainDataset(Dataset):
def __init__(self, mode='train'):
dataset_name = CONFIG.DATA.dataset
self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']
txt_list = CONFIG.DATA.data_dir[dataset_name]['train']
self.data_list = self.load_txt(txt_list)
if mode == 'train':
self.data_list, _ = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)
elif mode == 'val':
_, self.data_list = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)
self.p_sizes = CONFIG.DATA.TRAIN.packet_sizes
self.mode = mode
self.sr = CONFIG.DATA.sr
self.window = CONFIG.DATA.audio_chunk_len
self.stride = CONFIG.DATA.stride
self.chunk_len = CONFIG.DATA.window_size
self.hann = torch.sqrt(torch.hann_window(self.chunk_len))
self.mask_generator = MaskGenerator(is_train=True, probs=CONFIG.DATA.TRAIN.transition_probs)
def __len__(self):
return len(self.data_list)
def load_txt(self, txt_list):
target = []
with open(txt_list) as f:
for line in f:
target.append(os.path.join(self.target_root, line.strip('\n')))
target = list(set(target))
target.sort()
return target
def fetch_audio(self, index):
sig = load_audio(self.data_list[index], sample_rate=self.sr, chunk_len=self.window)
while sig.shape[1] < self.window:
idx = torch.randint(0, len(self.data_list), (1,))[0]
pad_len = self.window - sig.shape[1]
if pad_len < 0.02 * self.sr:
padding = np.zeros((1, pad_len), dtype=np.float)
else:
padding = load_audio(self.data_list[idx], sample_rate=self.sr, chunk_len=pad_len)
sig = np.hstack((sig, padding))
return sig
def __getitem__(self, index):
sig = self.fetch_audio(index)
sig = sig.reshape(-1).astype(np.float32)
target = torch.tensor(sig.copy())
p_size = random.choice(self.p_sizes)
sig = np.reshape(sig, (-1, p_size))
mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
sig *= mask
sig = torch.tensor(sig.copy()).reshape(-1)
target = torch.stft(target, self.chunk_len, self.stride, window=self.hann,
return_complex=False).permute(2, 0, 1).float()
sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False)
sig = sig.permute(2, 0, 1).float()
return sig, target