Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class ResBlocks(nn.Module): | |
def __init__(self, num_blocks, dim, norm, activation, pad_type): | |
super(ResBlocks, self).__init__() | |
self.model = [] | |
for i in range(num_blocks): | |
self.model += [ResBlock(dim, | |
norm=norm, | |
activation=activation, | |
pad_type=pad_type)] | |
self.model = nn.Sequential(*self.model) | |
def forward(self, x): | |
return self.model(x) | |
class ResBlock(nn.Module): | |
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'): | |
super(ResBlock, self).__init__() | |
model = [] | |
model += [Conv2dBlock(dim, dim, 3, 1, 1, | |
norm=norm, | |
activation=activation, | |
pad_type=pad_type)] | |
model += [Conv2dBlock(dim, dim, 3, 1, 1, | |
norm=norm, | |
activation='none', | |
pad_type=pad_type)] | |
self.model = nn.Sequential(*model) | |
def forward(self, x): | |
residual = x | |
out = self.model(x) | |
out += residual | |
return out | |
class ActFirstResBlock(nn.Module): | |
def __init__(self, fin, fout, fhid=None, | |
activation='lrelu', norm='none'): | |
super().__init__() | |
self.learned_shortcut = (fin != fout) | |
self.fin = fin | |
self.fout = fout | |
self.fhid = min(fin, fout) if fhid is None else fhid | |
self.conv_0 = Conv2dBlock(self.fin, self.fhid, 3, 1, | |
padding=1, pad_type='reflect', norm=norm, | |
activation=activation, activation_first=True) | |
self.conv_1 = Conv2dBlock(self.fhid, self.fout, 3, 1, | |
padding=1, pad_type='reflect', norm=norm, | |
activation=activation, activation_first=True) | |
if self.learned_shortcut: | |
self.conv_s = Conv2dBlock(self.fin, self.fout, 1, 1, | |
activation='none', use_bias=False) | |
def forward(self, x): | |
x_s = self.conv_s(x) if self.learned_shortcut else x | |
dx = self.conv_0(x) | |
dx = self.conv_1(dx) | |
out = x_s + dx | |
return out | |
class LinearBlock(nn.Module): | |
def __init__(self, in_dim, out_dim, norm='none', activation='relu'): | |
super(LinearBlock, self).__init__() | |
use_bias = True | |
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias) | |
# initialize normalization | |
norm_dim = out_dim | |
if norm == 'bn': | |
self.norm = nn.BatchNorm1d(norm_dim) | |
elif norm == 'in': | |
self.norm = nn.InstanceNorm1d(norm_dim) | |
elif norm == 'none': | |
self.norm = None | |
else: | |
assert 0, "Unsupported normalization: {}".format(norm) | |
# initialize activation | |
if activation == 'relu': | |
self.activation = nn.ReLU(inplace=False) | |
elif activation == 'lrelu': | |
self.activation = nn.LeakyReLU(0.2, inplace=False) | |
elif activation == 'tanh': | |
self.activation = nn.Tanh() | |
elif activation == 'none': | |
self.activation = None | |
else: | |
assert 0, "Unsupported activation: {}".format(activation) | |
def forward(self, x): | |
out = self.fc(x) | |
if self.norm: | |
out = self.norm(out) | |
if self.activation: | |
out = self.activation(out) | |
return out | |
class Conv2dBlock(nn.Module): | |
def __init__(self, in_dim, out_dim, ks, st, padding=0, | |
norm='none', activation='relu', pad_type='zero', | |
use_bias=True, activation_first=False): | |
super(Conv2dBlock, self).__init__() | |
self.use_bias = use_bias | |
self.activation_first = activation_first | |
# initialize padding | |
if pad_type == 'reflect': | |
self.pad = nn.ReflectionPad2d(padding) | |
elif pad_type == 'replicate': | |
self.pad = nn.ReplicationPad2d(padding) | |
elif pad_type == 'zero': | |
self.pad = nn.ZeroPad2d(padding) | |
else: | |
assert 0, "Unsupported padding type: {}".format(pad_type) | |
# initialize normalization | |
norm_dim = out_dim | |
if norm == 'bn': | |
self.norm = nn.BatchNorm2d(norm_dim) | |
elif norm == 'in': | |
self.norm = nn.InstanceNorm2d(norm_dim) | |
elif norm == 'adain': | |
self.norm = AdaptiveInstanceNorm2d(norm_dim) | |
elif norm == 'none': | |
self.norm = None | |
else: | |
assert 0, "Unsupported normalization: {}".format(norm) | |
# initialize activation | |
if activation == 'relu': | |
self.activation = nn.ReLU(inplace=False) | |
elif activation == 'lrelu': | |
self.activation = nn.LeakyReLU(0.2, inplace=False) | |
elif activation == 'tanh': | |
self.activation = nn.Tanh() | |
elif activation == 'none': | |
self.activation = None | |
else: | |
assert 0, "Unsupported activation: {}".format(activation) | |
self.conv = nn.Conv2d(in_dim, out_dim, ks, st, bias=self.use_bias) | |
def forward(self, x): | |
if self.activation_first: | |
if self.activation: | |
x = self.activation(x) | |
x = self.conv(self.pad(x)) | |
if self.norm: | |
x = self.norm(x) | |
else: | |
x = self.conv(self.pad(x)) | |
if self.norm: | |
x = self.norm(x) | |
if self.activation: | |
x = self.activation(x) | |
return x | |
class AdaptiveInstanceNorm2d(nn.Module): | |
def __init__(self, num_features, eps=1e-5, momentum=0.1): | |
super(AdaptiveInstanceNorm2d, self).__init__() | |
self.num_features = num_features | |
self.eps = eps | |
self.momentum = momentum | |
self.weight = None | |
self.bias = None | |
self.register_buffer('running_mean', torch.zeros(num_features)) | |
self.register_buffer('running_var', torch.ones(num_features)) | |
def forward(self, x): | |
assert self.weight is not None and \ | |
self.bias is not None, "Please assign AdaIN weight first" | |
b, c = x.size(0), x.size(1) | |
running_mean = self.running_mean.repeat(b) | |
running_var = self.running_var.repeat(b) | |
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:]) | |
out = F.batch_norm( | |
x_reshaped, running_mean, running_var, self.weight, self.bias, | |
True, self.momentum, self.eps) | |
return out.view(b, c, *x.size()[2:]) | |
def __repr__(self): | |
return self.__class__.__name__ + '(' + str(self.num_features) + ')' | |