pits / utils.py
junhyouk lee
hfdemo
b8b70ac
# from https://github.com/jaywalnut310/vits
import os
import sys
import logging
import subprocess
import torch
import numpy as np
from omegaconf import OmegaConf
from scipy.io.wavfile import read
MATPLOTLIB_FLAG = False
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format='[%(levelname)s|%(filename)s:%(lineno)s][%(asctime)s] >>> %(message)s'
)
logger = logging
def load_checkpoint(checkpoint_path, rank=0, model_g=None, model_d=None, optim_g=None, optim_d=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
config = checkpoint_dict['config']
if model_g is not None:
model_g, optim_g = load_model(
model_g,
checkpoint_dict['model_g'],
optim_g,
checkpoint_dict['optimizer_g'])
if model_d is not None:
model_d, optim_d = load_model(
model_d,
checkpoint_dict['model_d'],
optim_d,
checkpoint_dict['optimizer_d'])
if rank == 0:
logger.info(
"Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path,
iteration
)
)
return model_g, model_d, optim_g, optim_d, learning_rate, iteration, config
def load_checkpoint_diffsize(checkpoint_path, rank=0, model_g=None, model_d=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
config = checkpoint_dict['config']
if model_g is not None:
model_g = load_model_diffsize(
model_g,
checkpoint_dict['model_g'])
if model_d is not None:
model_d = load_model_diffsize(
model_d,
checkpoint_dict['model_d'])
if rank == 0:
logger.info(
"Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path,
iteration
)
)
del checkpoint_dict
return model_g, model_d, learning_rate, iteration, config
def load_model_diffsize(model, model_state_dict):
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
for k, v in model_state_dict.items():
if k in state_dict and state_dict[k].size() == v.size():
state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(state_dict, strict=False)
else:
model.load_state_dict(state_dict, strict=False)
return model
def load_model(model, model_state_dict, optim, optim_state_dict):
if optim is not None:
optim.load_state_dict(optim_state_dict)
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
for k, v in model_state_dict.items():
if k in state_dict and state_dict[k].size() == v.size():
state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(state_dict)
else:
model.load_state_dict(state_dict)
return model, optim
def save_checkpoint(net_g, optim_g, net_d, optim_d, hps, epoch, learning_rate, save_path):
def get_state_dict(model):
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
return state_dict
torch.save({'model_g': get_state_dict(net_g),
'model_d': get_state_dict(net_d),
'optimizer_g': optim_g.state_dict(),
'optimizer_d': optim_d.state_dict(),
'config': str(hps),
'iteration': epoch,
'learning_rate': learning_rate}, save_path)
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, wav = read(full_path)
if len(wav.shape) == 2:
wav = wav[:, 0]
if wav.dtype == np.int16:
wav = wav / 32768.0
elif wav.dtype == np.int32:
wav = wav / 2147483648.0
elif wav.dtype == np.uint8:
wav = (wav - 128) / 128.0
wav = wav.astype(np.float32)
return torch.FloatTensor(wav), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(args, init=True):
config = OmegaConf.load(args.config)
hparams = HParams(**config)
model_dir = os.path.join(hparams.train.log_path, args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
hparams.model_name = args.model
hparams.model_dir = model_dir
config_save_path = os.path.join(model_dir, "config.yaml")
if init:
OmegaConf.save(config, config_save_path)
return hparams
def get_hparams_from_file(config_path):
config = OmegaConf.load(config_path)
hparams = HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()