peekaboo-demo / src /models /attention.py
Anshul Nasery
Demo commit
44f2ca8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import get_activation
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings
from diffusers.models.lora import LoRACompatibleLinear
from .attention_processor import Attention
import math
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, d_head):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x, objs):
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm",
final_dropout: bool = False,
attention_type: str = "default",
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
**kwargs,
):
# Notice that normalization is always applied before the real computation in the following blocks.
if attention_mask is not None and not isinstance(attention_mask, list):
if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[-1]:
tmp = attention_mask.clone()
scale_factor = int(math.sqrt(attention_mask.shape[-1] // hidden_states.shape[1]))
try:
tmp = tmp.reshape(tmp.shape[0], 40, 72)
except:
try:
tmp = tmp.reshape(tmp.shape[0], 32, 32) # MSR-VTT
except:
tmp = tmp.reshape(tmp.shape[0], 96, 96)
tmp = tmp[:, ::scale_factor, ::scale_factor]
tmp = tmp.reshape(tmp.shape[0], 1, -1)
attention_mask = tmp
if attention_mask is not None:
tmp = attention_mask.clone()
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
tmp = (1-tmp)
orig_attn_mask = attention_mask.clone()
else:
# tmp = 0
tmp =1
orig_attn_mask = None
if attention_mask is not None and 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0.
attention_mask_2d = attention_mask + attention_mask.permute(0,2,1)
# Get it back to original range. This step is optional tbh
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attention_mask.dtype)
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
tmp_attention = torch.where(attention_mask < 0., 0., -10000.) # allow background
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
attention_mask_2d = attention_mask_2d * tmp_attention
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask.dtype)
attention_mask = attention_mask_2d
# Multiple objects
elif attention_mask is not None and isinstance(attention_mask, list):
if hidden_states.shape[1] != attention_mask[0].shape[-1]:
new_attention_mask = []
for attn_mask in attention_mask:
tmp = attn_mask.clone()
scale_factor = int(math.sqrt(attn_mask.shape[-1] // hidden_states.shape[1]))
try:
tmp = tmp.reshape(tmp.shape[0], 40, 72)
except:
tmp = tmp.reshape(tmp.shape[0], 32, 32)
tmp = tmp[:, ::scale_factor, ::scale_factor]
tmp = tmp.reshape(tmp.shape[0], 1, -1)
new_attention_mask.append(tmp)
attention_mask = new_attention_mask
orig_attn_mask = []
for attn_mask in attention_mask:
tmp = attn_mask.clone()
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
tmp = (1-tmp)
orig_attn_mask.append(attn_mask.clone())
if 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0.
attn_mask_2d = []
for attn_mask in attention_mask:
attention_mask_2d = attn_mask + attn_mask.permute(0,2,1)
# Get it back to original range. This step is optional tbh
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attn_mask.dtype)
attn_mask_2d.append(attention_mask_2d)
attention_mask_2d = torch.prod(torch.stack(attn_mask_2d, dim=0), dim=0)
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attn_mask.dtype)
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
tmp_attention = torch.where(torch.prod(torch.stack(attention_mask,dim=0),dim=0).abs() < 1., -10000., 0.) # Check this well
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
attention_mask_2d = attention_mask_2d * tmp_attention
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask_2d.dtype)
attention_mask = attention_mask_2d
else:
tmp = 1
orig_attn_mask = None
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
# breakpoint()
## self-attention amongst fg
attn_output = self.attn1(
norm_hidden_states, # + tmp,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
if attention_mask is not None:
tmp = 1-tmp
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 2.5 ends
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states*tmp, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*tmp)
)
if encoder_attention_mask is None:
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
if encoder_attention_mask is not None: # Encoder attention mask is not None
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
if not isinstance(orig_attn_mask, list):
orig_attn_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype).to(orig_attn_mask.device)
encoder_attention_mask_2d = encoder_attention_mask + orig_attn_mask.permute(0,2,1)
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d < 0., -10000, 0).type(encoder_attention_mask.dtype)
inverted_encoder_attention_mask = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype)
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token
inverted_orig_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype)
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1)
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask.dtype)
encoder_attention_mask = encoder_attention_mask_2d
else:
orig_attn_mask = [torch.where(orig_attn_mask_ < 0., 0., -10000.).type(orig_attn_mask_.dtype).to(orig_attn_mask_.device) for orig_attn_mask_ in orig_attn_mask]
encoder_attention_mask_2d = [encoder_attention_mask_ + orig_attn_mask_.permute(0,2,1) for encoder_attention_mask_, orig_attn_mask_ in zip(encoder_attention_mask, orig_attn_mask)]
encoder_attention_mask_2d = [torch.where(encoder_attention_mask_2d_ < 0., -10000, 0).type(encoder_attention_mask_2d_.dtype) for encoder_attention_mask_2d_ in encoder_attention_mask_2d]
inverted_encoder_attention_mask = torch.where(torch.sum(torch.stack(encoder_attention_mask, dim=0),dim=0) < 0., 0., -10000.).type(encoder_attention_mask[0].dtype)
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token
inverted_orig_mask = torch.where(torch.sum(torch.stack(orig_attn_mask,dim=0),dim=0) < 0., 0., -10000.).type(orig_attn_mask[0].dtype)
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1)
encoder_attention_mask_2d = torch.where(torch.sum(torch.stack(encoder_attention_mask_2d, dim=0), dim=0) < 0., -10000., 0.)
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask[0].dtype)
encoder_attention_mask = encoder_attention_mask_2d
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
## cross-attention amongst bg
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
del encoder_attention_mask_2d, inverted_encoder_attention_mask, inverted_encoder_attention_mask_2d, inverted_orig_mask, orig_attn_mask, attention_mask_2d, tmp_attention
torch.cuda.empty_cache()
hidden_states = attn_output + hidden_states
else:
norm_hidden_states2 = (
self.norm2(hidden_states*(1-tmp), timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*(1-tmp))
)
encoder_attention_mask2 = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype).to(encoder_attention_mask.device)
encoder_attention_mask2[:, :, 0] = -10000
attn_output2 = self.attn2(
norm_hidden_states2,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask2,
**cross_attention_kwargs,
)
hidden_states = attn_output*tmp + attn_output2*(1-tmp)+ hidden_states
else:
hidden_states = attn_output*tmp + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[
self.ff(hid_slice, scale=lora_scale)
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh")
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states, scale: float = 1.0):
for module in self.net:
if isinstance(module, (LoRACompatibleLinear, GEGLU)):
hidden_states = module(hidden_states, scale)
else:
hidden_states = module(hidden_states)
return hidden_states
class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.
"""
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
self.approximate = approximate
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate, approximate=self.approximate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = LoRACompatibleLinear(dim_in, dim_out * 2)
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states, scale: float = 1.0):
hidden_states, gate = self.proj(hidden_states, scale).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class ApproximateGELU(nn.Module):
"""
The approximate form of Gaussian Error Linear Unit (GELU)
For more details, see section 2: https://arxiv.org/abs/1606.08415
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
def forward(self, x):
x = self.proj(x)
return x * torch.sigmoid(1.702 * x)
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
emb = self.linear(self.silu(self.emb(timestep)))
scale, shift = torch.chunk(emb, 2)
x = self.norm(x) * (1 + scale) + shift
return x
class AdaLayerNormZero(nn.Module):
"""
Norm layer adaptive layer norm zero (adaLN-Zero).
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, timestep, class_labels, hidden_dtype=None):
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaGroupNorm(nn.Module):
"""
GroupNorm layer modified to incorporate timestep embeddings.
"""
def __init__(
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
):
super().__init__()
self.num_groups = num_groups
self.eps = eps
if act_fn is None:
self.act = None
else:
self.act = get_activation(act_fn)
self.linear = nn.Linear(embedding_dim, out_dim * 2)
def forward(self, x, emb):
if self.act:
emb = self.act(emb)
emb = self.linear(emb)
emb = emb[:, :, None, None]
scale, shift = emb.chunk(2, dim=1)
x = F.group_norm(x, self.num_groups, eps=self.eps)
x = x * (1 + scale) + shift
return x