File size: 6,183 Bytes
7e738ef
78a7c54
f9c5a74
 
 
 
 
 
f42f33d
 
78a7c54
 
 
 
 
 
 
 
 
 
ec95781
f9c5a74
 
d620d8e
f9c5a74
 
 
 
f42f33d
f9c5a74
cb6b0bf
f9c5a74
ec95781
f9c5a74
 
cb6b0bf
f9c5a74
 
 
ec95781
f9c5a74
 
 
ec95781
f9c5a74
 
 
 
 
 
 
 
 
 
 
 
 
ec95781
f9c5a74
 
 
 
 
 
 
 
 
 
cb6b0bf
f9c5a74
 
 
 
 
 
 
ec95781
f9c5a74
 
cb6b0bf
 
 
d0f6630
 
cb6b0bf
 
 
 
 
d0f6630
cb6b0bf
d0f6630
cb6b0bf
 
 
 
 
 
d0f6630
cb6b0bf
 
d0f6630
 
cb6b0bf
 
 
 
 
d0f6630
cb6b0bf
 
d0f6630
cb6b0bf
 
d0f6630
 
cb6b0bf
 
 
 
 
d0f6630
cb6b0bf
 
d0f6630
 
 
 
 
 
 
 
 
 
cb6b0bf
 
 
d0f6630
 
cb6b0bf
 
d0f6630
 
 
cb6b0bf
 
 
 
 
 
d0f6630
cb6b0bf
 
 
 
 
 
 
 
 
 
 
 
1c38311
cb6b0bf
 
 
 
 
 
 
 
 
 
ec95781
 
cb6b0bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess

def install_poppler():
    try:
        subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    except FileNotFoundError:
        print("Poppler not found. Installing...")
        subprocess.run("apt-get update", shell=True)
        subprocess.run("apt-get install -y poppler-utils", shell=True)

install_poppler()

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

RAG = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
                                                        trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)

@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
    images = convert_from_path(pdf_file.name)
    num_images = len(images)

    RAG.index(
        input_path=pdf_file.name,
        index_name="image_index",
        store_collection_with_index=False,
        overwrite=True
    )

    results = RAG.search(user_query, k=1)
    if not results:
        return "No results found.", num_images

    image_index = results[0]["page_num"] - 1
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": images[image_index],
                },
                {"type": "text", "text": user_query},
            ],
        }
    ]

    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")
    
    generated_ids = model.generate(**inputs, max_new_tokens=50)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    return output_text[0], num_images

css = """
body {
    font-family: Arial, sans-serif;
    background-color: #2b2b2b;
    color: #e0e0e0;
}
.container {
    max-width: 800px;
    margin: 0 auto;
    padding: 20px;
    background-color: #363636;
    border-radius: 10px;
    box-shadow: 0 0 10px rgba(0,0,0,0.3);
}
.title {
    font-size: 24px;
    font-weight: bold;
    text-align: center;
    margin-bottom: 20px;
    color: #50fa7b;
}
.submit-btn {
    background-color: #50fa7b;
    color: #282a36;
    padding: 10px 20px;
    border: none;
    border-radius: 5px;
    cursor: pointer;
    font-size: 16px;
    font-weight: bold;
}
.submit-btn:hover {
    background-color: #45c967;
}
.duplicate-button {
    background-color: #8be9fd;
    color: #282a36;
    padding: 10px 20px;
    border: none;
    border-radius: 5px;
    cursor: pointer;
    font-size: 16px;
    font-weight: bold;
    margin-top: 20px;
}
.duplicate-button:hover {
    background-color: #79c7d8;
}
a {
    color: #8be9fd;
    text-decoration: none;
}
a:hover {
    text-decoration: underline;
}
"""

explanation = """
<div style="background-color: #44475a; padding: 15px; border-radius: 5px; margin-bottom: 20px; color: #f8f8f2;">
    <h3 style="color: #50fa7b;">About Multimodal RAG</h3>
    <p>Multimodal RAG (Retrieval-Augmented Generation) combines text and image processing to provide more context-aware responses. This demo uses:</p>
    <ul>
        <li><strong style="color: #ffb86c;">ColPali</strong>: A multimodal retriever for efficient information retrieval from images and text.</li>
        <li><strong style="color: #ffb86c;">Byaldi</strong>: A new library by answer.ai that simplifies the use of ColPali.</li>
        <li><strong style="color: #ffb86c;">Qwen/Qwen2-VL-2B-Instruct</strong>: A large language model capable of processing both text and visual inputs.</li>
    </ul>
    <p>This combination allows for more accurate and context-aware responses to queries about uploaded PDFs.</p>
</div>
"""

footer = """
<div style="text-align: center; margin-top: 20px; color: #f8f8f2;">
    <a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
    <a href="https://github.com/arad1367" target="_blank">GitHub</a> |
    <a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
    <a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
    <a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
    <a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
    <br>
    Made with πŸ’– by Pejman Ebrahimi
</div>
"""

with gr.Blocks(css=css, theme='freddyaboulton/dracula_revamped') as demo:
    gr.HTML('<h1 style="text-align: center; font-size: 32px;"><a href="https://github.com/arad1367" target="_blank" style="text-decoration: none; color: #50fa7b;">Multimodal RAG with Image Query - By Pejman Ebrahimi (Please Like the Space)</a></h1>')
    gr.HTML(explanation)
    pdf_input = gr.File(label="Upload PDF")
    query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
    submit_btn = gr.Button("Submit", elem_classes="submit-btn")
    output_text = gr.Textbox(label="Model Answer")
    output_images = gr.Textbox(label="Number of Images in PDF")
    
    submit_btn.click(process_pdf_and_query, inputs=[pdf_input, query_input], outputs=[output_text, output_images])
    
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.HTML(footer)

demo.launch(debug=True)