File size: 4,085 Bytes
48548de
 
36e4ada
48548de
 
36e4ada
 
 
48548de
36e4ada
 
 
48548de
36e4ada
 
48548de
 
 
c931653
 
 
48548de
 
 
 
 
 
 
c931653
48548de
 
 
36e4ada
 
 
 
 
c931653
 
 
48548de
 
36e4ada
 
 
 
 
 
 
48548de
 
 
36e4ada
 
48548de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc9bba0
48548de
 
 
 
 
 
 
 
 
 
 
 
 
c931653
 
 
48548de
 
 
 
 
36e4ada
 
48548de
 
 
 
c931653
48548de
c931653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48548de
c931653
 
36e4ada
48548de
36e4ada
 
48548de
36e4ada
48548de
36e4ada
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import json
import traceback
from queue import Queue
from threading import Thread
from typing import List

import argilla as rg
import gradio as gr
from gradio_client import Client

client = rg.Argilla()

completed_record_events = Queue()


def build_dataset(client: rg.Argilla) -> rg.Dataset:
    settings = rg.Settings.from_hub("stanfordnlp/imdb")

    settings.questions.add(
        rg.LabelQuestion(name="sentiment", labels=["negative", "positive"])
    )

    dataset_name = "stanfordnlp_imdb"
    dataset = client.datasets(dataset_name) or rg.Dataset.from_hub(
        "stanfordnlp/imdb",
        name=dataset_name,
        settings=settings,
        client=client,
        split="train[:1000]",
    )

    return dataset


with gr.Blocks() as demo:
    argilla_server = client.http_client.base_url
    gr.Markdown("## Argilla Events")
    gr.Markdown(
        f"This demo shows the incoming events from the [Argilla Server]({argilla_server})."
    )
    gr.Markdown("### Record Events")
    gr.Markdown("#### Records are processed in background and suggestions are added.")

server, _, _ = demo.launch(prevent_thread_lock=True, app_kwargs={"docs_url": "/docs"})

# Set up the webhook listeners
rg.set_webhook_server(server)

for webhook in client.webhooks:
    webhook.enabled = False
    webhook.update()


# Create a webhook for record events
@rg.webhook_listener(events="record.completed")
async def record_events(record: rg.Record, type: str, **kwargs):
    print("Received event", type)

    completed_record_events.put(record)


dataset = build_dataset(client)


def add_record_suggestions_on_response_created():
    print("Starting thread")

    completed_records_filter = rg.Filter(("status", "==", "completed"))
    pending_records_filter = rg.Filter(("status", "==", "pending"))

    while True:
        try:
            record: rg.Record = completed_record_events.get()

            if dataset.id != record.dataset.id:
                continue

            # Prepare predict data
            field = dataset.settings.fields["text"]
            question = dataset.settings.questions["sentiment"]

            examples = list(
                dataset.records(
                    query=rg.Query(filter=completed_records_filter),
                    limit=5,
                )
            )

            some_pending_records = list(
                dataset.records(
                    query=rg.Query(filter=pending_records_filter),
                    limit=5,
                )
            )

            if not some_pending_records:
                continue

            some_pending_records = parse_pending_records(
                some_pending_records, field, question, examples
            )
            dataset.records.log(some_pending_records)

        except Exception:
            print(traceback.format_exc())
            continue


def parse_pending_records(
    records: List[rg.Record],
    field: rg.Field,
    question,
    example_records: List[rg.Record],
) -> List[rg.Record]:
    try:
        gradio_client = Client("davidberenstein1957/distilabel-argilla-labeller")

        payload = {
            "records": [record.to_dict() for record in records],
            "fields": [field.serialize()],
            "question": question.serialize(),
            "example_records": [record.to_dict() for record in example_records],
            "api_name": "/predict",
        }

        response = gradio_client.predict(**payload)
        response = json.loads(response) if isinstance(response, str) else response

        for record, suggestion in zip(records, response["results"]):
            record.suggestions.add(
                rg.Suggestion(
                    question_name=question.name,
                    value=suggestion["value"],
                    score=suggestion["score"],
                    agent=suggestion["agent"],
                )
            )
    except Exception:
        print(traceback.format_exc())

    return records


thread = Thread(target=add_record_suggestions_on_response_created)

thread.start()
demo.block_thread()