File size: 1,820 Bytes
33ffdb4
 
 
 
 
 
a3f8683
33ffdb4
20309d7
ee678e0
 
 
 
20309d7
bd41503
33ffdb4
 
 
ee678e0
33ffdb4
 
 
 
 
 
 
 
 
 
 
 
33a95fe
33ffdb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import spaces
import torch
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM
import os

os.environ["HF_TOKEN"] = os.getenv("auth")
dataset = load_dataset("ariG23498/pis-blogs-chunked")
embedding_model = SentenceTransformer(model_name_or_path="all-mpnet-base-v2", device="cuda")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", torch_dtype=torch.bfloat16, device_map="auto")

@spaces.GPU(duration=300)
def process_query(query):
    text_embeddings = embedding_model.encode(dataset["train"]["text"])
    query_embedding = embedding_model.encode(query)

    similarity_scores = embedding_model.similarity(query_embedding, text_embeddings)
    top_indices = (-similarity_scores).argsort()[0][:5]
    
    context = dataset["train"]["text"][top_indices[0]]
    url = dataset["train"]["url"][top_indices[0]]
    
    input_text = (
        f"Based on the context provided, '{context}', how would"
        f"you address the user's query regarding '{query}'? Please"
        " provide a detailed and contextually relevant response."
    )
    
    input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
    len_text = len(input_text)
    with torch.inference_mode():
        generated_outputs = model.generate(**input_ids, max_new_tokens=1000, do_sample=False)
        generated_outputs = tokenizer.batch_decode(generated_outputs, skip_special_tokens=True)
    
    response = generated_outputs[0][len_text:]
    return url, response

demo = gr.Interface(
    fn=process_query,
    inputs=gr.Textbox(label="User Query"),
    outputs=[gr.Textbox(label="URL"), gr.Textbox(label="Generated Response")]
)

demo.launch()