Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
|
|
4 |
import sqlite3
|
5 |
import openai
|
6 |
from langchain import OpenAI
|
7 |
-
from langchain_community.agent_toolkits.sql.base import create_sql_agent
|
8 |
from langchain_community.utilities import SQLDatabase
|
9 |
from langchain_community.document_loaders import CSVLoader
|
10 |
from langchain_community.vectorstores import FAISS
|
@@ -34,12 +34,17 @@ data.to_sql(table_name, conn, index=False, if_exists='replace')
|
|
34 |
# SQL table metadata (for validation and schema)
|
35 |
valid_columns = list(data.columns)
|
36 |
|
37 |
-
# Step 3:
|
38 |
db = SQLDatabase.from_uri('sqlite:///:memory:')
|
39 |
db.raw_connection = conn # Use the in-memory connection for LangChain
|
40 |
-
sql_agent = create_sql_agent(OpenAI(temperature=0), db, verbose=True)
|
41 |
|
42 |
-
# Step 4:
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
embeddings = OpenAIEmbeddings()
|
44 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
45 |
documents = loader.load()
|
@@ -48,7 +53,7 @@ vector_store = FAISS.from_documents(documents, embeddings)
|
|
48 |
retriever = vector_store.as_retriever()
|
49 |
rag_chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), retriever=retriever)
|
50 |
|
51 |
-
# Step
|
52 |
def validate_sql(query, valid_columns):
|
53 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
54 |
for column in valid_columns:
|
@@ -61,25 +66,25 @@ def validate_sql_with_sqlparse(query):
|
|
61 |
parsed_query = sqlparse.parse(query)
|
62 |
return len(parsed_query) > 0
|
63 |
|
64 |
-
# Step
|
65 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
66 |
if user_prompt:
|
67 |
try:
|
68 |
-
# Step
|
69 |
context = rag_chain.run(user_prompt)
|
70 |
st.write(f"Retrieved Context: {context}")
|
71 |
|
72 |
-
# Step
|
73 |
generated_sql = sql_agent.run(f"{user_prompt} {context}")
|
74 |
st.write(f"Generated SQL Query: {generated_sql}")
|
75 |
|
76 |
-
# Step
|
77 |
if not validate_sql_with_sqlparse(generated_sql):
|
78 |
st.write("Generated SQL is not valid.")
|
79 |
elif not validate_sql(generated_sql, valid_columns):
|
80 |
st.write("Generated SQL references invalid columns.")
|
81 |
else:
|
82 |
-
# Step
|
83 |
result = pd.read_sql(generated_sql, conn)
|
84 |
st.write("Query Results:")
|
85 |
st.dataframe(result)
|
|
|
4 |
import sqlite3
|
5 |
import openai
|
6 |
from langchain import OpenAI
|
7 |
+
from langchain_community.agent_toolkits.sql.base import SQLDatabaseToolkit, create_sql_agent # SQL toolkit import
|
8 |
from langchain_community.utilities import SQLDatabase
|
9 |
from langchain_community.document_loaders import CSVLoader
|
10 |
from langchain_community.vectorstores import FAISS
|
|
|
34 |
# SQL table metadata (for validation and schema)
|
35 |
valid_columns = list(data.columns)
|
36 |
|
37 |
+
# Step 3: Set up the SQL Database for LangChain
|
38 |
db = SQLDatabase.from_uri('sqlite:///:memory:')
|
39 |
db.raw_connection = conn # Use the in-memory connection for LangChain
|
|
|
40 |
|
41 |
+
# Step 4: Create the SQL toolkit
|
42 |
+
sql_toolkit = SQLDatabaseToolkit(db)
|
43 |
+
|
44 |
+
# Step 5: Create the SQL agent using the toolkit
|
45 |
+
sql_agent = create_sql_agent(OpenAI(temperature=0), toolkit=sql_toolkit, verbose=True)
|
46 |
+
|
47 |
+
# Step 6: Use FAISS with RAG for context retrieval
|
48 |
embeddings = OpenAIEmbeddings()
|
49 |
loader = CSVLoader(file_path=csv_file.name if csv_file else "default_data.csv")
|
50 |
documents = loader.load()
|
|
|
53 |
retriever = vector_store.as_retriever()
|
54 |
rag_chain = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), retriever=retriever)
|
55 |
|
56 |
+
# Step 7: Define SQL validation helpers
|
57 |
def validate_sql(query, valid_columns):
|
58 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
59 |
for column in valid_columns:
|
|
|
66 |
parsed_query = sqlparse.parse(query)
|
67 |
return len(parsed_query) > 0
|
68 |
|
69 |
+
# Step 8: Generate SQL query based on user input and run it with LangChain SQL Agent
|
70 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
71 |
if user_prompt:
|
72 |
try:
|
73 |
+
# Step 9: Retrieve context using RAG
|
74 |
context = rag_chain.run(user_prompt)
|
75 |
st.write(f"Retrieved Context: {context}")
|
76 |
|
77 |
+
# Step 10: Generate SQL query using SQL agent
|
78 |
generated_sql = sql_agent.run(f"{user_prompt} {context}")
|
79 |
st.write(f"Generated SQL Query: {generated_sql}")
|
80 |
|
81 |
+
# Step 11: Validate SQL query
|
82 |
if not validate_sql_with_sqlparse(generated_sql):
|
83 |
st.write("Generated SQL is not valid.")
|
84 |
elif not validate_sql(generated_sql, valid_columns):
|
85 |
st.write("Generated SQL references invalid columns.")
|
86 |
else:
|
87 |
+
# Step 12: Execute SQL query
|
88 |
result = pd.read_sql(generated_sql, conn)
|
89 |
st.write("Query Results:")
|
90 |
st.dataframe(result)
|