Spaces:
Running
on
Zero
Tutorial For Nervous Beginners
Installation
User friendly installation. Recommended only for synthesizing voice.
$ pip install TTS
Developer friendly installation.
$ git clone https://github.com/coqui-ai/TTS
$ cd TTS
$ pip install -e .
Training a tts
Model
A breakdown of a simple script that trains a GlowTTS model on the LJspeech dataset. See the comments for more details.
Pure Python Way
Download your dataset.
In this example, we download and use the LJSpeech dataset. Set the download directory based on your preferences.
$ python -c 'from TTS.utils.downloaders import download_ljspeech; download_ljspeech("../recipes/ljspeech/");'
Define
train.py
.Run the script.
CUDA_VISIBLE_DEVICES=0 python train.py
Continue a previous run.
CUDA_VISIBLE_DEVICES=0 python train.py --continue_path path/to/previous/run/folder/
Fine-tune a model.
CUDA_VISIBLE_DEVICES=0 python train.py --restore_path path/to/model/checkpoint.pth
Run multi-gpu training.
CUDA_VISIBLE_DEVICES=0,1,2 python -m trainer.distribute --script train.py
CLI Way
We still support running training from CLI like in the old days. The same training run can also be started as follows.
Define your
config.json
{ "run_name": "my_run", "model": "glow_tts", "batch_size": 32, "eval_batch_size": 16, "num_loader_workers": 4, "num_eval_loader_workers": 4, "run_eval": true, "test_delay_epochs": -1, "epochs": 1000, "text_cleaner": "english_cleaners", "use_phonemes": false, "phoneme_language": "en-us", "phoneme_cache_path": "phoneme_cache", "print_step": 25, "print_eval": true, "mixed_precision": false, "output_path": "recipes/ljspeech/glow_tts/", "datasets":[{"formatter": "ljspeech", "meta_file_train":"metadata.csv", "path": "recipes/ljspeech/LJSpeech-1.1/"}] }
Start training.
$ CUDA_VISIBLE_DEVICES="0" python TTS/bin/train_tts.py --config_path config.json
Training a vocoder
Model
❗️ Note that you can also use train_vocoder.py
as the tts
models above.
Synthesizing Speech
You can run tts
and synthesize speech directly on the terminal.
$ tts -h # see the help
$ tts --list_models # list the available models.
You can call tts-server
to start a local demo server that you can open it on
your favorite web browser and 🗣️.
$ tts-server -h # see the help
$ tts-server --list_models # list the available models.