Spaces:
Sleeping
Sleeping
Cryptic
commited on
Commit
•
eb91ddc
1
Parent(s):
90bcc62
test
Browse files- app.py +48 -58
- requirements.txt +3 -3
app.py
CHANGED
@@ -1,70 +1,60 @@
|
|
1 |
-
import
|
2 |
import tempfile
|
3 |
-
import json
|
4 |
-
import librosa
|
5 |
-
import numpy as np
|
6 |
import soundfile as sf
|
7 |
-
import torch
|
8 |
-
import gradio as gr
|
9 |
from transformers import pipeline
|
10 |
|
11 |
-
# Load models
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
'summarizer': pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=device)
|
16 |
-
}
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
audio_data, sample_rate = librosa.load(audio_path, sr=16000) # Whisper expects 16kHz
|
21 |
-
audio_data = audio_data.astype(np.float32)
|
22 |
-
|
23 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_wav:
|
24 |
-
sf.write(temp_wav.name, audio_data, sample_rate, format='WAV')
|
25 |
-
return temp_wav.name
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
temp_wav_path = load_and_convert_audio(audio_file.name)
|
33 |
-
|
34 |
-
# Transcription
|
35 |
-
transcription = models['transcriber'](temp_wav_path, return_timestamps=True)
|
36 |
-
results['transcription'] = transcription['text'] if isinstance(transcription, dict) else ' '.join([chunk['text'] for chunk in transcription])
|
37 |
-
|
38 |
-
# Summarization
|
39 |
-
text = results['transcription']
|
40 |
-
words = text.split()
|
41 |
-
chunk_size = 1000
|
42 |
-
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
43 |
-
|
44 |
-
summaries = [models['summarizer'](chunk, max_length=200, min_length=50, truncation=True)[0]['summary_text'] for chunk in chunks]
|
45 |
-
results['summary'] = ' '.join(summaries)
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
os.unlink(temp_wav_path)
|
53 |
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
return process_audio(audio)
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
import tempfile
|
|
|
|
|
|
|
3 |
import soundfile as sf
|
|
|
|
|
4 |
from transformers import pipeline
|
5 |
|
6 |
+
# Load models
|
7 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=-1)
|
8 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
9 |
+
question_generator = pipeline("text2text-generation", model="google/t5-efficient-tiny", device=-1)
|
|
|
|
|
10 |
|
11 |
+
# Upload audio file
|
12 |
+
uploaded_file = st.file_uploader("Upload Audio", type=["wav", "mp3"])
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
if uploaded_file is not None:
|
15 |
+
# Save the uploaded file to a temporary file
|
16 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_audio_file:
|
17 |
+
temp_audio_file.write(uploaded_file.getbuffer())
|
18 |
+
temp_audio_path = temp_audio_file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Read the audio file using SoundFile
|
21 |
+
try:
|
22 |
+
# Load audio data
|
23 |
+
audio_data, sample_rate = sf.read(temp_audio_path)
|
24 |
|
25 |
+
# Transcribing audio
|
26 |
+
lecture_text = transcriber(temp_audio_path)["text"]
|
|
|
27 |
|
28 |
+
# Preprocessing data
|
29 |
+
num_words = len(lecture_text.split())
|
30 |
+
max_length = min(num_words, 1024) # BART model max input length is 1024 tokens
|
31 |
+
max_length = int(max_length * 0.75) # Convert max words to approx tokens
|
32 |
|
33 |
+
if max_length > 1024:
|
34 |
+
lecture_text = lecture_text[:int(1024 / 0.75)] # Truncate to fit the model's token limit
|
|
|
35 |
|
36 |
+
# Summarization
|
37 |
+
summary = summarizer(
|
38 |
+
lecture_text,
|
39 |
+
max_length=1024, # DistilBART max input length is 1024 tokens
|
40 |
+
min_length=int(max_length * 0.1),
|
41 |
+
truncation=True
|
42 |
+
)
|
43 |
+
|
44 |
+
# Clean up the summary text
|
45 |
+
if not summary[0]["summary_text"].endswith((".", "!", "?")):
|
46 |
+
last_period_index = summary[0]["summary_text"].rfind(".")
|
47 |
+
if last_period_index != -1:
|
48 |
+
summary[0]["summary_text"] = summary[0]["summary_text"][:last_period_index + 1]
|
49 |
+
|
50 |
+
# Questions Generation
|
51 |
+
context = f"Based on the following lecture summary: {summary[0]['summary_text']}, generate some relevant practice questions."
|
52 |
+
questions = question_generator(context, max_new_tokens=50)
|
53 |
+
|
54 |
+
# Output
|
55 |
+
st.write("\nSummary:\n", summary[0]["summary_text"])
|
56 |
+
for question in questions:
|
57 |
+
st.write(question["generated_text"]) # Output the generated questions
|
58 |
|
59 |
+
except Exception as e:
|
60 |
+
st.error(f"Error during processing: {str(e)}")
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
|
|
|
2 |
torch
|
3 |
soundfile
|
4 |
-
transformers
|
5 |
numpy
|
6 |
-
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
torch
|
4 |
soundfile
|
|
|
5 |
numpy
|
6 |
+
librosa
|